Software
Takes
Command

LEV MANOVICH

g e MO8 Rl Rl
NEW YORK * LONDON « NEW DELHI ¢ SYDNEY




CHAPTER ONE

Alan Kay'’s universal
media machine

Medium:
8.a. A specific kind of artistic technique or means of expression
as determined by the materials used or the creative methods
involved: the medium of lithography.

b. The materials used in a specific artistic technique: oils as a
medium.

American Heritage Dictionary, 4th edition
(Houghton Mifflin, 2000)

“The best way to predict the future is to invent it.”
Alan Kay

Appearance versus function

Between its invention in the mid-1940s and the arrival of PCs in
the early 1980s, the digital computer was mostly used for military, il
scientific, and business calculations and data processing. It was not ‘
interactive. It was not designed to be used by a single person. In
short, it was hardly suited for cultural creation. H .

i

I

|

|

As a result of a number of developments of the 1980s and
1990s—the rise of the personal computer industry, adoption
of Graphical User Interfaces (GUI), the expansion of computer




56 SOFTWARE TAKES COMMAND

networks and the World Wide Web—computers moved into the
cultural mainstream. Software replaced many other tools and
technologies for creative professionals. It has given hundreds of
millions of people the abilities to create, manipulate, sequence
and share media—but has this led to the invention of fundamen-
tally new forms of culture? Today media companies are busy
promoting e-books and interactive television; the consumers are
happily purchasing music albums and feature films distributed
in digital form, as well making photographs and video with their
digital cameras and cell phones; office workers are reading PDF
documents which imitate paper.

In short, it appears that the revolution in the means of production,
distribution, and access of media has not been accompanied by a
similar revolution in the syntax and semantics of media. Who
shall we blame for this? Shall we put the blame on the pioneers
of cultural computing—]. C. R. Licklider, Ivan Sutherland, Ted
Nelson, Douglas Engelbart, Seymour Paper, Nicholas Negroponte,
Alan Kay, and others? Or, as Nelson and Kay themselves are eager
to point out, does the problem lie with the way the industry imple-
mented their ideas?

Before we blame the industry for bad implementation—we can
always pursue this argument later if necessary—let us look into the
thinking of the inventors of cultural computing themselves. For
instance, what about the person who guided the development of a
prototype of a modern person computer—Alan Kay?

Between 1970 and 1981 Alan Kay was working at Xerox
PARC—a research center established by Xerox in Palo Alto.
Building on the already accomplished work of the pioneers of
cultural computing, the Learning Research Group at Xerox PARC
headed by Kay, systematically articulated the paradigm and the
technologies of vernacular media computing, as it exists today.'

! Kay has expressed his ideas in a few articles and a large number of interviews
and public lectures. The following have been my main primary sources: Alan Kay
and Adele Goldberg, Personal Dynamic Media, IEEE Computer 10, no. 3 (1977
Alan Kay, “The Early History of Smalltalk,” The 2nd ACM SIGPLAN Conference
on History of Programming Languages (New York: ACM, 1993), pp. 69-95; Alan
Kay, “A Personal Computer for Children of All Ages,” Proceedings of the ACM
1972 National Conference (Boston, 1972); Alan Kay, Doing with Images Makes
Symbols, videotape (University Video Communications, 1987), http://archive.org/
details/AlanKeyD1987/; Alan Kay, “User Interface: A Personal View,” in The Art of

ALAN KAY’S UNIVERSAL MEDIA MACHINE 57

Although selected artists, filmmakers, musicians, and architects
were already using computers since the 1950s, often developing
their software in collaboration with computer scientists working
in research labs (Bell Labs, IBM Watson Research Center, etc.)
most of this software was aimed at producing only particular
kinds of images, animations or music, congruent with the ideas of
their authors. In addition, each program was designed to run on a
particular machine. Therefore, these software programs could not
function as general-purpose tools easily usable by others.

Itis well known most of the key ingredients of personal computers
as they exist today came out of Xerox PARC: the Graphical User
Interface with overlapping windows and icons, bitmapped display,
color graphics, networking via Ethernet, mouse, laser printer, and
WYSIWYG (“what you see is what you get”) printing. But what
is equally important is that Kay and his colleagues also developed
a range of applications for media manipulation and creation that
also all used a graphical interface. They included a word processor,
a file system, a drawing and painting program, an animation
program, a music editing program, etc. Both the general user
interface and the media manipulation programs were written in the
same programming language, Smalltalk. While some of the appli-
cations were programmed by members of Kay’s group, the users
that included seventh-grade high-school students programmed
others.? (This was consistent with the essence of Kay’s vision:
to provide users with a programming environment, examples of ©
programs, and already-written general tools so the users would be
able to make their own creative tools.)

When Apple introduced the first Macintosh computer in 1984,
it brought the vision developed at Xerox PARC to consumers
(the new computer was priced at USD $2,495). The original
Macintosh 128K included a word processing and a drawing
application (MacWrite and MacPaint, respectively). Within a few
years these were joined by other software for creating and editing

Human-Computer Interface Design, ed. Brenda Laurel (Reading, Mass: Addison-
Wesley, 1990), pp. 191-207; David Canfield Smith et al., “Designing the Star user
Interface,” Byte, issue 4 (1982).

2 Alan Kay and Adele Goldberg, “Personal Dynamic Media,” in New Media
Reader, ed. Noah Wardrip-Fruin and Nick Montfort (The MIT Press, 2003), p. 399.




58 SOFTWARE TAKES COMMAND

different media: Word, PageMaker and VideoWorks (1985),’
SoundEdit (1986), Freehand and Illustrator (1987), Photoshop
(1990), Premiere (1991), After Effects (1993), and so on. In the
early 1990s, similar functionality became available on PCs running
Microsoft Windows.* And while Macs and PCs were at first not
fast enough to offer true competition for traditional media tools
and technologies (with the exception of word processing), other
computer systems specifically optimized for media processing
started to compete with these technologies in the 1980s. (The
examples are the NeXT Workstation, produced between 1989 and
1996; Amiga, produced between 1985 and 1994; and Paintbox,
first released in 1981.)

By around 1991, the new identity of a computer as a personal
media editor was firmly established. (This year Apple released
QuickTime, which brought video to the desktop; the same year
saw the release of James Cameron’s Terminator I1, which featured
pioneering computer-generated special effects). The vision developed
at Xerox PARC became a reality—or rather, one important part
of this vision in which the computer was turned into a personal
machine for display, authoring and editing content in different
media. And while in most cases Alan Kay and his collaborators
were not the first to develop particular kinds of media applica-
tions—for instance, paint programs and animation programs were
already written in the second part of the 1960s’—by implementing
all of them on a single machine and giving them consistent
appearance and behavior, Xerox PARC researchers established a
new paradigm of media computing,.

[ think that I have made my case. The evidence is overwhelming. It
is Alan Kay and his collaborators at PARC that we must take to task
for making digital computers imitate older media. By developing
easy-to-use GUI-based software to create and edit familiar media
types, Kay and others appear to have locked the computer into
being a simulation machine for “old media.” Or, to put this in terms
of Jay Bolter and Richard Grusin’s influential book Remediation:
Understanding New Media (2000), we can say that GUI-based
software turned a digital computer into a “remediation machine:”

' Videoworks was renamed Director in 1987.
41982: AutoCAD; 1989: Illustrator; 1992: Photoshop, QuarkXPress.
5 See http://sophia.javeriana.edu.co/~ochavarr/computer_graphics_history/historia/

ALAN KAY’S UNIVERSAL MEDIA MACHINE 59

a machine that expertly represents a range of earlier media. (Other
rechnologies developed at PARC, such as the bitmapped color
display used as the main computer screen, laser printing, and the
first Page Description Language which eventually lead to Postscript,
were similarly conceived to support the computer’s new role as a
machine for simulation of physical media.)

Bolter and Grusin define remediation as “the representation of
one medium in another.”® According to their argument, new media
always remediate the old ones and therefore we should not expect
that computers would function any differently. This perspective
emphasizes the continuity between computational media and
earlier media. Rather than being separated by different logics, all
media including computers follow the same logic of remediation.
The only difference between computers and other media lies in
how and what they remediate. As Bolter and Grusin put this in
the first chapter of their book, “What is new about digital media
lies in their particular strategies for remediating television, film,
photography, and painting.” In another place in the same chapter
they make an equally strong statement that leaves no ambiguity
about their position: “We will argue that remediation is a defining
characteristic of the new digital media.”

If today we consider all the digital media created by both
consumers and by professionals—digital photography and video
shot with inexpensive cameras and cell phones, the contents
of personal blogs and online journals, illustrations created
in Photoshop, feature films cut on Avid, etc.—in terms of its
appearance digital media indeed often looks exactly the same
way as media before computers. Thus, if we limit ourselves to
looking at the media surfaces, the remediation argument accurately
describes much of computational media; But rather than accepting
this condition as an inevitable consequence of the universal logic of
remediation, we should ask why this is the case. In other words, if
contemporary computational media imitates other media, how did
this become possible? There was definitely nothing in the original
theoretical formulations of digital computers by Turing or Von
Neumann about computers imitating other media such as books,
photography, or film.

¢ Jay Bolter and Richard Grusin, Remediation: Understanding New Media (The
MIT Press, 2000).




60 SOFTWARE TAKES COMMAND

The conceptual and technical gap which separates the first
room-sized computers used by the military to calculate the
shooting tables for anti-aircraft guns and crack German communi-
cation codes, and contemporary small desktops and laptops used
by ordinary people to create, edit and share media is vast. The
contemporary identity of a computer as a media processor took
about forty years to emerge, if we count from 1949 when MIT’s
Lincoln Laboratory started to work on first interactive computers
to 1989 when the first commercial version of Photoshop was
released. It took generations of brilliant and creative thinkers to
invent the multitude of concepts and techniques that today make
possible for computers to “remediate” other media so well. What
were their reasons for doing this? What wds their thinking? In
short, why did these people dedicate their careers to inventing the
ultimate “remediation machine”?

While media theorists have spent considerable efforts in trying
to understand the relationships between digital media and older
physical and electronic media in the 1990s and 2000s, the important
sources—the writing and projects by Ivan Sutherland, Douglas
Engelbart, Ted Nelson, Alan Kay, and other pioneers working in
the 1960s and 1970s—remained largely unexamined. This book
does not aim to provide a comprehensive intellectual history of the
invention of media computing. Thus, I am not going to consider
the thinking of all key figures in the history of media computing
(to do this right would require more than one book). Rather, my
concern is with the present and the future. Specifically, I want to
understand some of the dramatic transformations in what media
is, what it can do, and how we use it—the transformations that are
clearly connected to the shift from previous media technologies to
software. Some of these transformations had already taken place
in the 1990s but were not much discussed at the time (for instance,
the emergence of a new language of moving images and visual
design in general). Others have not even been named yet. Still
others—such as remix and mashup culture—are being referred to
all the time, and yet the analysis of how they were made possible
by the evolution of media software has so far not been attempted.

In short, I want to understand what is “media after software”—
that is, what happened to the techniques, languages, and the
concepts of twentieth-century media as a result of their computer-
ization. Or, more precisely, what has happened to media after

ALAN KAY’S UNIVERSAL MEDIA MACHINE 61

they have been software-sized. (And since in the space of a single
book I can only consider some of these techniques, languages and
concepts, I will focus on those that, in my opinion, have not been
yet discussed by others.)

In this chapter we will take a closer look at one place where the
identity of a computer as a “remediation machine” was largely put
in place—Alan Kay’s Learning Research Group at Xerox PARC,
in operation during the 1970s. We can ask two questions: first,
what exactly did Kay want to do, and second, how did he and his
colleagues go about achieving it?> The brief answer—which will
be expanded below—is that Kay wanted to turn computers into
a “personal dynamic media” which could be used for learning,
discovery, and artistic creation. His group achieved this by system-
atically simulating most existing media within a computer while
simultaneously adding many new properties to these media. Kay
and his collaborators also developed a new type of programming
language that, at least in theory, would allow the users to quickly
invent new types of media using the set of general tools already
provided for them. All these tools and simulations of already
existing media were given a unified user interface designed to
activate multiple mentalities and ways of learning—kinesthetic,
iconic, and symbolic.

Kay conceived of “personal dynamic media” as a fundamentally
new kind of media with a number of historically unprecedented
properties such as the ability to hold all the user’s information,
simulate all types of media within a single machine, and “involve the
learner in a two-way conversation.”” These properties enable new
relationships between the user and the media s/he may be creating,
editing, or viewing on a computer. And this is essential if we want to
understand the relationships between computers and earlier media.
Briefly put, while visually, computational media may closely mimic
other media, these media now function in different ways.

For instance, consider digital photography, which often imitates
traditional photography in appearance. For Bolter and Grusin, this
is an example of how digital media ‘remediates” its predecessors.

7 Since the work of Kay’s group in the 1970s, computer scientists, hackers and
designers added many other unique properties—for instance, we can quickly move
media around the net and share it with millions of people using Flickr, YouTube,
and other sites.




62 SOFTWARE TAKES COMMAND

But rather than only paying attention to their appearance, let us
think about how digital photographs can function. If a digital
photograph is turned into a physical object in the Wf)rld——an
illustration in a magazine, a poster on the wall, a print on a
t-shirt—it functions in the same ways as its predecessor (unless
it has augmented reality features, like IKEA’s 2013 catalog).®
But if we leave the same photograph inside its native computer
environment—which may be a laptop, a network storage system,
or any computer-enabled media device such as a cell phone which
allows its user to edit this photograph and move it to other devices
and the Internet—it can function in ways which, in my view,
make it radically different from its traditional equivalent. To use
a different term, we can say that a digital photograph offers its
users many “affordances” that its non-digital predecessor dld not.
For example, a digital photograph can be quickly modified in
numerous ways and equally quickly combined with other images;
instantly moved around the world and shared with other people;
and inserted into a multimedia document, or an architectural 3D
design. Furthermore, we can automatically (i.e., by running the
appropriate algorithms) improve its contrast, make it sharper, and
even in some situations remove blur.

Note that only some of these new properties are specific to a
particular medium—in our example, a digital ph()tograph, i.e. an
array of pixels represented as numbers. Other properties are shared
by a larger class of media species—for instance, at the current stage
of digital culture, all types of media files can be attached to an email
message. Still others are even more general features of a computer
environment within the current GUI paradigm as developed forty
years ago at PARC: for instance, the fast response of a computer
to a user’s actions which ensures “no discernible pause between
cause and effect.” Still others are enabled by network protocols
such as TCP/IP that allow all kinds of computers and other devices
to be connected to the same network. In summary, we can say that
only some of the “new DNA” of a digital photograph is due its
particular place of birth, i.e., inside a digital camera. Many others

$ Roberto Baldwin, “Ikea’s Augmented Reality Catalog Will Let You Peek
Inside Furniture,” July 20, 2012, http://www.wired.com/gadgetlab/2012/07/
ikeas—augmcnted—rcnliry—cnml()g-lcts—you—pcek—insidc—rhc—maIm/

9 Kay and Goldberg, Personal Dynamic Media, p. 394.

ALAN KAY’S UNIVERSAL MEDIA MACHINE 63

are the result of the current paradigm of network computing in
general.

Before diving further into Kay’s ideas, I should more fully
disclose my reasons for focusing on him as opposed to somebody
else. The story I will present could also be told differently. It is
possible to put Sutherland’s work on Sketchpad in the center
of computational media history; or Engelbart and his Research
Center for Augmenting Human Intellect which throughout the
1960s developed hypertext (independently of Nelson), the mouse,
the window, the word processor, mixed text/graphics displays, and
a number of other “firsts.” Or we can shift focus to the work of
the Architecture Machine Group at MIT, which since 1967 was
headed by Nicholas Negroponte (in 1985 this group became the
MIT Media Lab). We also need to recall that by the time Kay’s
Learning Research Group at PARC fleshed out the details of GUI
and programmed various media editors in Smalltalk (a paint
program, an illustration program, an animation program, etc.),
artists, filmmakers and architects were already using computers
for more than a decade and a number of large-scale exhibitions of
computer art were put in major museums around the world such as
the Institute of Contemporary Art, London, The Jewish Museum,
New York, and Los Angeles County Museum of Art. And certainly,
in terms of advancing computer techniques for visual represen-
tation enabled by computers, other groups of computer scientists
were already ahead. For instance, at the University of Utah, which
became the main place for computer graphics research during the
first half of the 1970s, scientists were producing 3D computer
graphics far superior to the simple images that could be created on
computers being built at PARC. Next to the University of Utah,
a company called Evans and Sutherland (headed by the same
Ivan Sutherland who was also teaching at the University of Utah)
was already using 3D graphics for flight simulators—essentially
pioneering the type of new media that can be called “navigable 3D
virtual space.”

While the practical work accomplished at Xerox PARC to
establish the computer as a comprehensive media machine is one
of my reasons, it is not the only one. The key reason I decided to
focus on Kay is his theoretical formulations that place computers in
relation to other media and media history. While Vannevar Bush,
J. C. R. Licklider and Douglas Engelbart were primary concerned




64 SOFTWARE TAKES COMMAND

with augmentation of intellectual and in particular scientific
work, Kay was equally interested in computers as “a medium of
expression through drawing, painting, animating pictures, and
composing and generating music.”'” Therefore if we really want
to understand how and why computers were redefined as a culture
machine, and how the new computational media is different from
earlier physical and electronic media, I think that Kay provides us
with the best theoretical perspective.

“simulation is the central notion of
the Dynabook”

While Alan Kay articulated his ideas in a number of articles and
talks, his 1977 article co-authored with one of his main PARC
collaborators, computer scientist Adele Goldberg, is a particularly
useful resource if we want to understand contemporary computa-
tional media. In this article Kay and Goldberg describe the vision
of the Learning Research Group at PARC in the following way:
to create “a personal dynamic medium the size of a notebook (the
Dynabook) which could be owned by everyone and could have
the power to handle virtually all of its owner’s information-related
needs.”" (The actual Alto computer built at Xerox PARC was the
size of later PCs; the article strategically refers to it as “interim
dynabook.”) Kay and Goldberg ask the readers to imagine that
this device “had enough power to outrace your senses of sight
and hearing, enough capacity to store for later retrieval thousands
of page-equivalents of reference materials, poems, letters, recipes,
records, drawings, animations, musical scores, waveforms, dynamic
simulations and anything else you would like to remember and
change. it

In my view, “all” in the first statement is important: it means
that the Dynabook—or computational media environment in
general, regardless of the size of a form of device in which it

0 [bid., p. 393.

" Ibid., p. 393. The emphasis in this and all following quotes from this article is
mine—L. M.

2 bid., p. 394.

R

B e

ALAN KAY’'S UNIVERSAL MEDIA MACHINE 65

is implemented—should support viewing, creating and editing
all possible media traditionally used for human expression and
communication. Accordingly, while separate programs to create
works in different media were already in existence, Kay’s group
for the first time implemented them all together within a single
machine. In other words, Kay’s paradigm was not to simply
create a new type of computer-based media that would co-exist
with other physical media. Rather, the goal was to establish a
computer as an umbrella, a platform for all existing expressive
artistic media. (At the end of the article Kay and-Goldberg give a
name for this platform, calling it a *metamedium.”) This paradigm
changes our understanding of what media is. From Gotthold
Ephraim Lessing’s Laocoon; or, On the Limits of Painting and
Poetry (1766) to Nelson Goodman’s Languages of Art (1968), the
modern discourse about media depends on the assumption that
different mediums have distinct properties and in fact should be
understood in opposition to each other. Putting all mediums within
a single computer environment does not necessarily erase all differ-
ences in what various mediums can represent and how they are
perceived—but it does bring them closer to each other in a number
of ways. Some of these new connections were already apparent to
Kay and his colleagues; others became visible only decades later
when the new logic of media set in place at PARC unfolded more
fully; some may still not be visible to us today because they have
not been given practical realization. One obvious example of such
connections is the emergence of multimedia as a standard form of
communication: web pages, PowerPoint presentations, multimedia
artwork, mobile multimedia messages, media blogs, and other
communication forms which combine multiple mediums. Another
is the adoption of common interface conventions and tools which
we use in working with different types of media regardless of their
origin: for instance, a virtual camera, a magnifying lens, and of
course the omnipresent copy, cut and paste commands. Yet another
is the ability to map one media into another using appropriate
software—images into sound, sound into images, quantitative data
into a 3D shape or sound, etc.—used widely today in such areas
as DJ/V]/live cinema performances and information visualization.
All in all, it is as though different media are actively trying to reach
towards each other, exchanging properties and letting each other
borrow their unique features. (This situation is the direct opposite




66 SOFTWARE TAKES COMMAND

“Kids learning to use the interim Dynabook.” (The original caption from
the article.)

ALAN KAY’S UNIVERSAL MEDIA MACHINE 67

L . W W O W e
-, - - . 5 VR

“The interim Dynabook system consists of processor, disk drive, display,
keyboard, and pointing devices.” (The original caption from the article.)




68 SOFTWARE TAKES COMMAND s ALAN KAY’S UNIVERSAL MEDIA MACHINE 69

| Doty Stee Puve o 2f76 o E e
it

o PO aase
@ o f + roctangle point 38 30 peint 224
248 11 ontline

(a2 & rectangle point 20 28 pint
Jekf 281 2 cutdine

(€13 ¢ yectmgle point 54 ¢ point
28 256, 13 cutline
W@rtfrtmde foame 1 1,
W tZermtle famea 2
otd

X

The Alto Screen showing windows with graphics drawn using commands
in Smalltalk programming language.

|

Top: “An electronic circuit layout system programmed by a 15-year-
old student™ Bottom: “Data for this score was captured on a musical
keyboard. A program then converts the data to standard musical
notation.” (The original captions from the article.)




70 SOFTWARE TAKES COMMAND

of the modernist media paradigm of the early twentieth century,
which was focused on discovering a unique language for each
artistic medium.)

Alan Turing theoretically defined a computer as a machine that
can simulate a very large class of other machines, and it is this
simulation ability that is largely responsible for the proliferation
of computers in modern society. But as I have already mentioned,
neither he nor other theorists and inventors of digital computers
explicitly considered that this simulation could also include media.
It was only Kay and his generation that extended the idea of
simulation to media—thus turning Universal Turing Machine into
a Universal Media Machine, so to speak.

Accordingly, Kay and Goldberg write: “In a very real sense,
simulation is the central notion of the Dynabook.”" When we
use computers to simulate some process in the real world—the
behavior of a weather system, the processing of information in
the brain, the deformation of a car in a crash—our concern is to
correctly model the necessary features of this process or system. We
want to be able to test how our model would behave in different
conditions with different data, and the last thing we want to do is
for computers to introduce some new properties into the model
that we ourselves did not specify. In short, when we use computers
as a general-purpose medium for simulation, we want this medium
to be completely “transparent.”

But what happens when we simulate different media in a
computer? In this case, the appearance of new properties may
be welcome as they can extend the expressive and communi-
cation potential of these media. Appropriately, when Kay and
his colleagues created computer simulations of existing physical
media—i.e. the tools for representing, creating, editing, and viewing
these media—they “added” many new properties. For instance, in
the case of a book, Kay and Goldberg point out “It need not be
treated as a simulated paper book since this is a new medium with
new properties. A dynamic search may be made for a particular
context. The non-sequential nature of the file medium and the use
of dynamic manipulation allow a story to have many accessible
points of view.”'* Kay and his colleagues also added various other

12\ Thidil pL. 399,
kY 7 SR i b ol

ALAN KAY’S UNIVERSAL MEDIA MACHINE 71

properties to the computer simulation of paper documents. As Kay
has referred to this in another article, his idea was not to simply
imitate paper but rather to create “magical paper.”!’ For instance,
the PARC team gave users the ability to modify the fonts in a
document and create new fonts. They also implemented another
important idea that had already been developed by Douglas
Engelbart’s team in the 1960s: the ability to create different views
of the same structure (I will discuss this in more detail below). And
both Engelbart and Ted Nelson had already “added” something
else: the ability to connect different documents or different parts of
the same document through hyperlinking—i.e. what we now know
as hypertext and hypermedia. Engelbart’s group also developed
the ability for multiple users to collaborate on the same document.
This list goes on and on: e-mail in 1965, newsgroups in a9 79,
World Wide Web in 1990, etc.

Fach of these new properties had far-reaching consequences.
Take Search, for instance. Although the ability to search through
a page-long text document does not sound like a very radical
innovation, as the document gets longer this ability becomes more
and more important. It becomes absolutely crucial if we have a
very large collection of documents—such as all the web pages
on the Web. Although current search engines are far from being
perfect and new technologies will continue to evolve, imagine how
different the culture of the Web would be without them.

Or take the capacity to collaborate on the same document(s) by
2 number of users connected to the same network. While it was
already widely used by companies in the 1980s and 1990s, it was
not until the early 2000s that the wider public saw the real cultural
potential of this “addition” to print media. By harvesting the small
amounts of labor and expertise contributed by a large number of
volunteers, social software projects—most famously, Wikipedia—
created vast and dynamically updatable pools of knowledge which
would be impossible to create in traditional ways. (In a less visible
way, every time we do a search on the Web and then click on
some of the results, we also contribute to a knowledge-set used by
everybody else. In deciding in which sequence to present the results
of a particular search, Google’s algorithms take into account which

15 Alan Kay, “User Interface: A Personal View,” p. 199




72 SOFTWARE TAKES COMMAND

among the results of previous searches for the same words people
found most useful.)

Studying the writings and public presentations of the people
who invented interactive media computing—Sutherland, Engelbart,
Nelson, Negroponte, Kay, and others—makes it clear that they did
not produgce the new properties of computational media as an after-
thought.|On the contrary, they knew that they were turning physical
media int® new media}ln 1968 Engelbart gave his famous demo at
the Fall Joint Computer Conference in San Francisco before a few
thousand people that included computer scientists, IBM engineers,
people from other companies involved in computers, and funding
officers from various government agencies.'® Although Engelbart had
only ninety minutes, he had a lot to show. Over the few previous years,
his team at The Research Center for Augmenting Human Intellect
had essentially developed the modern office environment as it exists
today (not be confused with the modern media design environment
which was developed later at PARC). Their NLS computer system
included word processing with outlining features, documents
connected through hypertext, online collaboration (two people at
remote locations working on the same document in real-time), online
user manuals, online project planning systems, and other elements of
what is now called “computer-supported collaborative work.” The
team also developed the key elements of modern user interface that
were later refined at PARC: a mouse and multiple windows.

Paying attention to the sequence of the demo reveals that while
Engelbart had to make sure that his audience would be able to relate
the new computer system to what they already knew and used, his
focus was on new features of simulated media never before available
previously.” Engelbart devotes the first segment of the demo to
word processing, but as soon as he briefly demonstrated text entry,
cut, paste, insert, naming and saving files—in other words, the set
of tools which make a computer into a more versatile typewriter—

16 M. Mitchell Waldrop, The Dream Machine: J. C. R. Licklider and the Revolution
That Made Computing Personal (Viking, 2001), p. 287.

17 Complete video of Engelbardt’s 1968 demo is available at http://sloan.stanford.
edu/MouseSite/1968Demo.html. For the detailed descriptions of NLS functions, see
Augmentation Research Center, “NLS User Training Guide,” Stanford Research
Institute: Menlo Park, California), 1997, http://bitsavers.org/pdf/sri/arc/NLS_User_
Training_Guide_Apr77.pdf

rsprnlys

SRR AN

ALAN KAY’S UNIVERSAL MEDIA MACHINE 73

he then goes on to show in more depth the features of his system
which no writing medium had before: “view control.” As Engelbart
points out, the new writing medium could switch at the user’s wish
between many different views of the same information. A text file
could be sorted in different ways. It could also be organized as
a hierarchy with a number of levels, as in outline processors or
outlining mode of contemporary word processors such as Microsoft
Word. For example, a list of items can be organized by categories
and individual categories can be collapsed and expanded.

Engelbart next shows another example of view control, which
today, forty-five years after his demo, is still not available in popular
document management software. He makes a long “to do” list and
organizes it by locations. He then instructs the computer to display
these locations as a visual graph (a set of points connected by
lines.) In front of our eyes, representation in one medium changes
into another medium—text becomes a graph. But this is not all.
The user can control this graph to display different amounts of
information—something that no image in physical media can do.
As Engelbart clicks on different points in a graph corresponding
to particular locations, the graph shows the appropriate part of
his “to do” list. (This ability to interactively change how much
and what information an image shows is particularly important in
today’s information visualization applications.)

Next Engelbart presents “a chain of views” which he prepared
beforehand. He switches between these views using “links” which
may look like hyperlinks the way they exist on the Web today—but
they actually have a different function. Instead of creating a path
between many different documents a la Vannevar Bush’s Memex
(often seen as the precursor to modern hypertext), Engelbart is
using links as a method for switching between different views of a
single document organized hierarchically. He brings a line of words
displayed in the upper part of the screen; when he clicks on these
words, more detailed information is displayed in the lower part
of the screen. This information can in turn contain links to other
views that show even more detail.'®

18 For the detailed descriptions of these and other capabilities of NLS, see
Augmentation Research Center, “NLS User Training Guide,” Stanford Research
Institute: Menlo Park, California), 1997, http://bitsavers.org/pdf/sri/arc/NLS_User_
Training_Guide_Apr77.pdf




74 SOFTWARE TAKES COMMAND
MARKET 1 ROUTE

PRODUCE 2 (MARKET) MARKET
ORANGES 3 (SHOES)  SHOE STORE
APPLES 4 (HDWR} HARDWARE
BANANAS 5 (ART) ART SUPPLY
CAPREIES 6 (DRUGS) DRUG STORE
RETFUCL 7 (LIBRARY) LIBRARY
BEANS

CANS
APPLE SALCE
BEAN SOUP
TOMATO SOUP

CEREALS
BREAD

NOODLES (ELBOW KIND)
FRENCH BREAD

COLD LOCKER
MILK

ROUTE SEE(ALPHA) ART

WORK
\

4" MARKEY

/

HOWR il o HOME

Examples of “view control” as implemented in NLS. Top left: a
hierarchical view of a shopping list. Top right: a collapsed view sorted by
location. Bottom: a graph view showing the sequence of locations. (Text
and graphics were traced from the original video of Engelbart’s 1968
demo.)

/
/

|

i

/

ALAN KAY’S UNIVERSAL MEDIA MACHINE 75

Rather than using links to drift through the textual universe
associatively and “horizontally,” we move “vertically” between
more general and more detailed information. Appropriately, in
Engelbart’s paradigm, we are not “navigating”—we are “switching
views.” We can create many different views of the same infor-
mation and switch between these views in different ways. And
this is what Engelbart systematically explains in this first part of
his demo. He demonstrates that you can change views by issuing
commands, by typing numbers that correspond to different parts
of a hierarchy, by clicking on parts of a picture, or on links in the
text. (In 1967 Ted Nelson articulated and named a similar idea of a
type of hypertext, which would allow a reader to “obtain a greater
detail on a specific subject.” He named it “stretchtext.”"”)

Since new media theory and criticism emerged in the early
1990s, endless texts have been written about interactivity,
hypertext, virtual reality, cyberspace, cyberculture, cyborgs, and
so on. But I have never seen anybody discuss “view control.” And
yet this is one of the most fundamental and radical new techniques
for working with information and media available to us today. It
is used daily by each of us numerous times. “View control,” i.e.
the abilities to switch between many different views and kinds of
views of the same information is now implemented in multiple
ways not only in OS, word processors and email clients, but also
in all “media processors” (i.e. media editing software): AutoCAD,
Maya, After Effects, Final Cut, Photoshop, InDesign, and so on.
For instance, in the case of 3D software, it can usually display the
model in at least half a dozen different ways: in wireframe, fully
rendered, etc. In the case of animation and visual effects software,
since a typical project may contain dozens of separate objects each
having dozens of parameters, it is often displayed in a way similar
to how outline processors can show text. In other words, the user
can switch between more and less information. You can choose
to see only those parameters which you are working on right
now. You can also zoom in and out of the composition. When
you do this, parts of the composition do not simply get smaller
or bigger—they show less or more information automatically. For
instance, at a certain scale you may only see the names of different

2

19 Ted Nelson, “Stretchtext” (Hypertext Note 8), 1967, http:/xanadu.com/
XUarchive/htn8.tif




e

76
SOFTWARE TAKES COMMAND ALAN KAY’S UNIVERSAL MEDIA MACHINE 77

% Fi o
» ile Edit Diew Special Training % rile edit UGN Special Training

o
=|vby Name

i o AR 1) Date =
amazing | bySize
peskscrap_ DY Kind
Desktop document
Empty Folder falder
Example docurnent
Finder system file
Mousing Around apphication
Notes docurnent

= Guided Tour
314K in disk 79K available

D

=
Mousing Around  System AMAZING Desktop

[t golord

Example Empty Folder

% File Edit biew Special Training

= Guided Tour
Name Kind

System k system file
Mousing Around opplication
realfinder dogurnent
AMAZING application
Session 2 documnent
Session 4 docurnent
Finder systern file
Session 1 docurnent

System AMAZING Desktop

i

Ernpty Folder

View. control as implemented in Macintosh System software, 1984. Top:
applzcatzons, folders, and files in “Guided Tour” floppy disk. Bottom:
View of applications, folders, and files sorted by icon.

Top: View of applications, folders, and files sorted by date. Bottom: View
of applications, folders, and files sorted by size.




78 SOFTWARE TAKES COMMAND

parameters; but when you zoom into the display, the program
may also display the graphs which indicate how these parameters
change over time.

Let us look at another example—Ted Nelson’s concept of
hypertext that he developed in the early 1960s (independently but
parallel to Engelbart).? In his article A File Structure for the
Complex, the Changing, and the Indeterminate, Nelson discusses
the limitations of books and other paper-based systems for organ-
izing information and then introduces his new concept:

However, with the computer-driven display and mass memory,
it has become possible to create a new, readable medium, for
education and enjoyment, that will let the reader find his level,
suit his taste, and find the parts that take on special meaning for
him, as instruction and enjoyment.

Let me introduce the word “hypertext” to mean a body of
* written or pictorial material interconnected in such a complex

way that it could not be conveniently presented or represented
on paper.!

“A new, readable medium”—these words make it clear that Nelson
was not simply interested in “patching up” books and other paper
documents. Instead, he wanted to create something distinctively
new. But was not hypertext as proposed by Nelson simply an
extension of older textual practices such as exegesis (extensive
interpretations of holy scriptures such as the Bible, Talmud,
Qur’an), annotations, or footnotes? While such historical prece-
dents for hypertext are often proposed, they mistakenly equate
Nelson’s proposal with a very limited form in which hypertext is
experienced by most people today—i.e., the World Wide Web. As
Noah Wardrip-Fruin pointed out, “The Web implemented only

20 Douglas C. Engelbart, Augmenting Human Intellect: A Conceptual Framework
(Stanford Research Institute, 1962), http://www.dougengelbart.org/pubs/augment-
3906.html. Although the implementation of hypertext in Engelbart’s NLS was much
more limited than Nelson’s concept of hypertext, looking at Engelbart’s discussion
in Augmenting Human Intellect shows that his ideas for new systems for organizing
information were at least as rich as Nelson’s.

21 Theodor H. Nelson, “A File Structure for the Complex, the Changing, and the
Indeterminate” (1965), in New Media Reader, p. 144.

ALAN KAY’S UNIVERSAL MEDIA MACHINE 79

one of many types of structures proposed by Nelson already in
1965—chunk style’ hypertext—static links that allow the user to
jump from page to page.”*

Following the Web implementation, most people today think
of hypertext as a body of text connected through one-directional
links. However, the terms “links” does not even appear in Nelson’s
original definition of hypertext. Instead, Nelson talks about new
complex interconnectivity withﬂw mecha-
nisms that can be employed to achieve it. A particular system
proposed in Nelson’s 19657 AFficle TS one way to implement such
a_vision, but_as his defnition ,kmpm are
also possible. ’

TWhat kind of structures are possible in hypertext?” asks
Nelson in a research note from 1967. He answers his own question
in a short but very suggestive manner: “Any.”?* Nelson goes on
to explain: “Ordinary text may be regarded as a special case—the
simple and familiar case—of hypertext, just as three-dimensional
space and the ordinary cube are the simple and familiar special
cases of hyperspace and hypercube.”?* (In 2007 Nelson re-stated
this idea in the following way: « ‘Hypertext’—a word I coined long
ago—is not technology but potentially the fullest generalization of
documents and literature.”*)

If “hypertext” does not simply mean “links,” it also does not
only mean “text.” Although in its later popular use the word
“hypertext” came to refer to linked text, as one can see from the
quote above, Nelson included “pictures” in his definition of hyper-
text.? And in the following paragraph, he introduces the terms
hyperfilm and bypermedia:

22 Noah Wardrip-Fruin, introduction to Theodor H. Nelson, “A File Structure for
the Complex, the Changing, and the Indeterminate” (1965), in New Media Reader,
pLLEBK

23 Ted Nelson, “Brief Words on the Hypertext” (Hypertext Note 1), 1967, http://
xanadu.com/XUarchive/htn1.tif

24 Ibid.
25 Ted Nelson, http://transliterature.org/ (version TransHum-D23, 07.067 )07 %

2 I his presentation at the 2004 Digital Retroaction symposium Noah Wardrip-
Fruin stressed that Nelson’s vision included hypermedia and not only hypertext.
Noah Wardrip-Fruin, presentation at Digital Retroaction: a Research Symposium,
UC Santa Barbara, September 17-19, 2005, http://dc—mrg.english.ucsh.edu/
conference/D_Retro/conference.html




80 SOFTWARE TAKES COMMAND

Films, sound recordings, and video recordings are also linear
strings, basically for mechanical reasons. But these, too, can now
be arranged as non-linear systems — for instance, lattices — for
educational purposes, or for display with different emphasis...
The hyperfilm — a browsable or vari-sequenced movie - is only
one of the possible hypermedia that require our attention.”?’

\Yhere is hyperfilm today, almost 50 years after Nelson articulated
this concept? If we understand hyperfilm in the same limited sense
as hypertext is understood today—shots connected through links
which a user can click on—it would seems’ that hyperfilm never
fully took off. A number of early pioneering projects—Aspen
Movie Map (Architecture Machine Group, 1978-9), Earl King
and Somata (Grahame Weinbren, 1983-5; 1991-3), CD-ROMs
by Bob Stein’s Voyager Company, and Wax: Or the Discovery
of Television Among the Bees (David Blair, 1993)—have not
been followed up. Similarly, interactive movies and FMV-games
created by the video game industry in the first half of the 1990s
soon fell out of favor, replaced by 3D games (which offered more
mteractiviFy). But if instead we think of hyperfilm in a broader
sense, as it was conceived by Nelson—any interactive structure
for connecting video or film elements, with a traditional film being
a special case—we realize that hyperfilm is much more common
tgday than it may appear. Numerous interactive Flash and HTMLS
sites which use video, video clips with markers which allow a user
jump to a particular point in a video (for instance, see the videos on
TED.com?*), and database cinema®’ are just some of the examples
of hyperfilm today.

Decades. before hypertext and hypermedia became the common
ways for interacting with information, Nelson understood well
what these ideas meant for our well-established cultural practices
and concepts. The announcement for his January 5, 1965 lecture at
Vassar College talks about this in terms that are even more relevant
to<.iay than they were then: “The philosophical consequences of all
this are very grave. Our concepts of ‘reading’, ‘writing’, and ‘book’

fall apart, and we are challenged to design ‘hyperfiles” and write ‘

27 Nelson, A File Structure, p. 144.
28 www.ted.com (March 8, 2008).
[o) 2 See httpi/softcinema.net/form.htm

ALAN KAY'S UNIVERSAL MEDIA MACHINE 81 ‘\‘

‘hypertext’ that may have more teaching power than anything that N“
could ever be printed on paper.””’ = W\\

These statements align Nelson’s thinking and work with artists
and theorists who similarly wanted to destabilize the conventions
of cultural _communication. Digital media scholars extensively
discﬁés/éﬁ"f)meen Nelson and French theorists writing
during the 1960s—Roland Barthes, Michel Foucault and Jacque
Derrida.}! Others have pointed out close parallels between the
thinking of Nelson and literary experiments taking place around
the same time, such as works by Oulipo.”* (We can also note
the connection between Nelson’s hypertext and the non-linear
structure of the films of French filmmakers who set out to question
the classical narrative style: Hiroshima Mon Amout, Last Year at
Marienbad, Breatbless and others).

How far shall we take these parallels? In 1987 Jay Bolter and
Michael Joyce wrote that hypertext could be seen as “a continu-
ation of the modern ‘tradition’ of experimental literature in print”
which includes “modernism, futurism, Dada surrealism, lettrism,
the nouveau roman, concrete poetry.” Refuting their claim, Espen
J. Aarseth has argued that hypertext is not a modernist structure
per se, although it can support modernist poetics if the author
desires this.** Who is right? Since this book argues. that cultural
software turned media into metamedia—a fundamentally new
semiotic and technological system which includes most previous
media techniques and aesthetics as ‘its elements—I also think
that hypertext is actually quite different from modernist literary
tradition. 1 agree with Aarseth that hypertext is indeed much
more general than any particular poetics such as modernist ones.

//,
50 Announcement of Ted Nelson’s lecture at Vassar College, January 5, 1965, http:// €
xanadu.com/XUarchive/ccnwwt65.tif

31 George Landow, ed., Hypertext: The Convergence. of Contemporary Critical
Theory and Technology (The Johns Hopkins University Press, 1991); Jay Bolter, _%
The writing space: the computer, hypertext, and the history of writing (Hillsdale,

NJ: L. Erlbaum Associates, 1991).

32 Randall Packer and Ken Jordan, Multimedia: From Wagner to Virtual Reality4
(W. W. Norton & Company, 2001); Noah Wardrip-Fruin and Nick Monford, New
Media Reader (The MIT Press, 2003).

31 Quoted in Espen J. Aarseth, Cybertext: Perspectives on Ergodic Literature (The
Johns Hopkins University Press, 1997), p- 89.

i Fspen J. Aarseth, Cybertext, 89-90.




82 SOFTWARE TAKES COMMAND

Indeed, already in 1967 Nelson said that hypertext could support
any structure of information including that of traditional texts—
and presumably, this also includes different modernist poetics.
(Importantly, this statement is echoed in Kay and Goldberg’s
definition of the computer as a “metamedium” whose content is
“a wide range of already-existing and not-yet-invented media.”)

What about the scholars who see the strong connections
between the thinking of Nelson and modernism? Although Nelson
says that hypertext can support any information structure and that
this information does not need to be limited to text, his examples
and his style of writing show an unmistakable aesthetic sensi-
bility—that of literary modernism. He clearly dislikes “ordinary
text.” The emphasis on complexity and interconnectivity and on
breaking up conventional units for organizing information such
as a page clearly aligns Nelson’s proposal for hypertext with
the early twentieth-century experimental literature—the inven-
tions of Virginia Woolf, James Joyce, the Surrealists, etc. This
connection to literature is not accidental since Nelson’s original
motivation for his research that led to hypertext was to create a
system for handling both the notes for literary manuscripts and
hose manuscripts themselves. Nelson also already knew about the
writings of William Burroughs. The very title of the article—A File
Structure for the Complex, the Changing, and the Indeterminate—
would make the perfect title for an early twentieth-century
avant-garde manifesto, as long as we substitute “file structure”
with some “ism.”

Nelson’s modernist sensibility also shows itself in his thinking
about new mediums that can be established with the help of a
computer. However, his work should not be seen as a simple
continuation of modernist tradition. Rather, both his and Kay’s
research represent the next stage of the avant-garde project.
The early twentieth-century avant-garde artists were primarily
interested in questioning conventions of established media such
as photography, print, graphic design, cinema, and architecture.
Thus, no matter how unconventional the paintings that came
out from Futurism, Orphism, Suprematism or De Stijl were, their
manifestos were still talking about them as paintings—rather
than as a new media. In contrast, Nclson and Kay explicitly write
' : ; :_existing ones.

NdsonQ(/lth the computer-driven dlsplay and mass memory, 1

ALAN KAY’S UNIVERSAL MEDIA MACHINE 83

has become possible to create a new, readable medium.”)Kay and
Goldberg: “It [computer text| need not be treated as a simulated
paper book since this is a new medium with new properties.”
Another key difference between how modernist artists and

pioneers of cultural software approached the job of inventing
new media and extending existing ones is captured by the title
of Nelson’s article I have been already quoting above: “A File
Structure for the Complex, the Changing, and the Indeterminate.”
Instead of a particular modernist “ism,” we get a file structure.
Cubism, Expressionism, Futurism, Orphism, Suprematism, and
Surrealism proposed new_distinct _systems for organizing infor-
mation, with cach system fighting all others for the dominance
in the cultural memespheére. T contrast, Bush, Licklider, Nelson,
Engelbart, Kay, Negroponte, and their colleagues created meta-

. systems that can support many kinds of mformation structures.

| Kay calle such a system §a_fEstmetamed elson_referred to

| asfhypertext and hypermedia} Engelbart wrote \automated

| external symbol mampuldtl()n and {bootstrapping,”f~but behind

.

i

the differences in their visions lay the similar understanding of
| the radically new potential offered by computers for information
| manipulation. The prefixes “meta-" and “hyper-” used by Kay
. and Nelson were the appropriate characterizations for a system
\ which was more than another new medium that could remediate
| other media in its particular ways. Instead, the new system would
be capable of simulating all these media with all their remediation
strategies—as well as supporting development of what Kay and
Goldberg referred to as new “not-yet-invented media.” And of
course, this was not all. Equally important was the role of inter-
activity. The new meta-systems proposed by Nelson, Kay and
others were to be used interactively to support the processes of

thinking, discovery, decision making, and creative expression. In
‘ontrast, the aesthetics created by modernist movements could be
understood as mformatl(m formatting” systems—to be used for
selecting and ' ' 1 presentations that
are then distributed to the users, not unlike PowerPoint slides.
Finally, at Teast in Kay’s and Nelson’s vision, the task of defining
new information structures and media manipulation techniques—
and, in fact, new media as a whole—W¥as given to the user, ?athe
4, than being the sole province of the designers. This decision had
far-reaching consequences for shaping contemporary culture. Once

-




84 SOFTWARE TAKES COMMAND

computers and programming were democratized enough, many
creative people started to focus on creating these new structures and
techniques rather than using the existing ones to make “content.”
Since the end of 2000, extending the computer metamedium by
writing new software, plugins, programming libraries and other
tools became the new cutting-edge type of cultural activity — giving
a new meaning to McLuhan’s famous formula “the medium is the
message.”

Today a typical article in computer science or information science
will not be talking about inventing a “new medium” as a justifi-
cation for research. Instead, it is likely to refer to previous work
in some field or sub-field of computer science such as “knowledge
discovery,” “data mining,” “semantic web,” etc. It can also refer to
existing social and cultural practices and industries—for instance,
“e-learning,” “video game development,” “collaborative tagging,”
or “massively distributed collaboration.” In_either case, the need
for new research is justified by a reference to already established or
popular practices—academic paradigms which have been funded,
Targescate-imdustries, and mainstream social routines which do
not threaten or question the existing social order. This means
tha T atr of © i carch which deals with
media—web technologies, media computing, hypermedia, human-
computer interfaces, computer graphics, and so on—is oriented
towards “mainstream” media usage.

In other words, either computer scientists are trying to make
more efficient the technologies already used in media industries
(video games, web search engines, film production, etc.) or they
are inventing new tech i at are likely to be used by these
industries in the future.m%nomv mediums for its own
ake 1s not so ing which anybody is likely to pursue, or get
funded. From this perspective, the software industry and business
in general is often more innovative than academic computer
cience. |For instance, T edi fcarions (Wikipedia, FIicRT;
YouTube, Facebook, del.icio.us, Digg, etc.) were not invented in the
academy; nor were HyperCard, QuickTime, HTML, Photoshop,
After Effects, Flash, or Google Earth. This was no different in
previous decades. It is, therefore, not accidental that the careers of
both Ted Nelson and Alan Kay were spent in the industry and not
the academy: Kay worked for and was a fellow at Xerox PARC,
Atari, Apple and Hewlett-Packard; Nelson was a consultant and

”»

ALAN KAY’S UNIVERSAL MEDIA MACHINE 85

a fellow at Bell Laboratories, Datapoingorporation, Autodesk;
both were also associated with Disney.

Why did Nelson and Kay find more support in industry than in
academia for their quest to invent new computer media? And why
is the industry (by which I simply mean any entity which creates
the products which can be sold in large quantities, or monetized
in other ways, regardless of whether this entity is a large multina-
tional company or a small start-up)—more interested in innovative
media technologies, applications, and content than computer
science? The systematic answer to this question will require its
own investigation. Also, what kinds of innovations each modern
institution can support changes over time. But here is one brief
answer: modern business thrives on_creating new markets, new
W. Although the actual devel-
opment of such new markets and products is always risky, it is also
very profitable. This was already the case in the previous decades
when Nelson and Kay were supported by Xerox, Atari, Apple, Bell
Labs, Disney, etc. In the 2000s, following the globalization of the
1990s, all areas of business embraced innovation to an unprec-
édented degree; this_pace quickened around 2005 as companies
fully focused on competing for new consumers in China, India,
and other “emerging” economies. Around the same time, we saw
& similar increase in_the number of innavative products in the IT

industry: open APIs of leading Web 2.0 sites, daily announcements
of new web _services, locative media applications, new innovative
“oroducts such as iPhone, new paradigms in imaging such as HDR
and non-destructive editing, the beginnings of a “long tail” for
software, open source hardware, and so on.

mnalyzed, the aim
of the inventors of computational media—Engelbart, Nelson,
Kay and the people who worked with them—was not simply to
create accurate simulations of physical media. Instead, in every
case the goal was to create “a new medium with new properties”
which would allow people to communicate, learn, and create in
new ways. So while today the content of these new media may
often look the same as that of its predecessors, we should not
be fooled by this similarity. The newness lies not in the content

\§7but in the software tools used to create, edit, view, distribute,

and share this canten, Therefore, rather than only Tooking at the

Toutput” of software-based cultural practices, we need to consider




Q/‘(‘

Il
86

SOFTWARE TAKES COMMAND

software itself—since it allows people to work with media in a
mumber of historicatly tmprecedented ways. So while on the level

appearance compuratiomat media_indeed often emediate (i.e.
represent) previous media, the(S(—)ffwarc environlrle_l;iin which this
media “lives” is very different.™

Let me add two more examples. One is Ivan Sutherland’s
Sketchpad (1962). Created by Sutherland as a part of his PhD
thesis at MIT, Sketchpad deeply influenced all subsequent work in
computational media (including that of Kay) not only because it
was the first interactive media authoring program but also because
it made it clear that computer simulations of physical media can
add many exciting new properties to the media being simulated.
Sketchpad was the first software that allowed its users to interac-
tively create and modify line drawings. As Noah Wardrip-Fruin
pointed out, it “moved beyond paper by allowing the user to work
at any of 2000 levels of magnification cnablingMuﬁ
Wﬁical media, would Clthww
or require detail work at an impractically small size.”* Sketchpad
Similarly redefined graphical elements of a design as objects which
“can be manipulated, constrained, instantiated, represented ironi-
cally, copied, and recursively operated upon, even recursively
merged.” For instance, if the designer defined new graphical
clements as instances of a master element and later made a change
to the master, all these instances would also change automatically.

Another new property, which perhaps demonstrated most
dramatically how computer-aided drafting and drawing were
different from their physical counterparts, was Sketchpad’s use
of constraints. In Sutherland’s own words, “The major feature
which distinguishes a Sketchpad drawing from a paper and pencil
drawing is the user’s ability to specify to Sketchpad mathematical
conditions on already drawn parts of his drawing which will be
automatically satisfied by the computer to make the drawing take
the exact shape desired.” For instance, if a user drew a few lines,
and then gave the appropriate command, Sketchpad automatically

55 Noah Wardrip-Fruin, introduction to “Sketchpad. A Man-Machine Graphical
Communication System,” in New Media Reader, 1963, p. 109.

6 Ibid.

7 Ivan  Sutherland, “Sketchpad. A Man-Machine Graphical Communication
System,” Proceedings of the AFIPS Spring Joint Computer Conference, Detroit,

ALAN KAY’S UNIVERSAL MEDIA MACHINE 87

Frames from Sketchpad demo video illustrating the program s use of
constraints. Left column: a user selects parts of a drawing. Right column:
Sketchpad automatically adjusts the drawing. (The captured frames were
edited in Photoshop to show the Sketchpad screen more clearly.)



88 SOFTWARE TAKES COMMAND

moved these lines until they were parallel to each other. If a user

gave a different command and selected a particular line, Sketchpad

moved the lines in such a way so they would parallel to each other
and perpendicular to the selected line.

Although we have not exhausted the list of new properties that
Sutherland built into Sketchpad, it should be clear that this first
interactive graphical editor was not only simulating existing media.
Appropriately, Sutherland’s 1963 paper on Sketchpad repeatedly
emphasizes the new graphical capacities of his system, marveling
how it opens new fields of “graphical manipulation that has never
been available before.”? The very title given by Sutherland to
his PhD thesis foregrounds the novelty of his work: @ketchpad:
A man-machine graphical communication systena Rather than
conceiving of Sketchpad as simply another medium, Sutherland
presents it as something else—a communication system between
two entities: a human and an intelligent machine. Kay and
Goldberg later also foregrounded this communication dimension,
referring to it as “a two-way conversation” and calling the new

N metamedium” “active.”® (We can also think of Sketchpad as a
practical demonstration of the idea of “man-machine symbiosis”
by J. C. R. Licklider applied to image making and design.*’)

My last éxample comes from the software development that at
first sight may appear to contradict my argument: paint software.
Surely, the applications which simulate in detail the range of
effects made possible with various physical brushes, paint knives,
canvases, and papers are driven by the desire to recreate the
experience of working within an existing medium rather than the
desire to create a new one? Wrong. In 1997 an important computer
graphics pioneer Alvy Ray Smith wrote a memo titled Digital Paint
Systems: Historical Overview.*' In this text Smith (who himself
had a background in art) makes an important distinction between

Michigan, May 21-3, 1963, pp. 329-46; in New Media Reader, Noah Wardrip-
Fruin and Nick Montfort (eds).

8. Thidytip a8y

» Kay and Goldberg, “Personal Dynamic Media,” 394.

4 3. C. R. Licklider, “Man-Machine Symbiosis,” IRE Transactions on Human
Factors in Electronics, vol. HFE-1, March 1960, pp. 4-11, in New Media Reader,
eds. Noah Wardrip-Fruin and Nick Montfort.

41 Alvy Ray Smith, Digital Paint Systems: Historical Overview (Microsoft Technical
Memo 14, May 30, 1997). http://alvyray.com/

ALAN KAY’S UNIVERSAL MEDIA MACHINE 89

digital paint programs and digital paint systems. In his definition,
“A digital paint program does cssentially no more than implement
; a digital simulation of classic painting with a brush on a canvas.

A digital paint system will take the notion much farther, using
the “simulation of painting” as a familiar metaphor to seduce
the artist into the new digital, and perhaps forbidding, domain,”

mphasis in the original). According to Smith’s history, most
commercial painting applications, including Photoshop, fall into
the paint system category. His genealogy of paint systems begins
with Richard Shoup’s SuperPaint, developed at Xerox PARC in
1972-3.2 While SuperPaint allowed the user to paint with a variety
of brushes in different colors, it also included many techniques not
possible with traditional painting or drawing tools. For instance, as
described by Shoup in one of his articles on SuperPaint, “Objects
or areas in the picture may be scaled up or down in size, moved,
copied, overlaid, combined or changed in color, and saved on disk
for future use or erased.”*’

Most important, however, was the ability to grab frames from
video. Once loaded into the system, such a frame could be treated
as any other image—that is, an artist could use all of SuperPaint’s
drawing and manipulation tools, add text, combine it with other
images, etc. The system could also translate what appeared on its
screen back into a video signal. Accordingly, Shoup is clear that
his system was much more than a way to draw and paint with
a computer. In a 1979 article, he refers to SuperPaint as a new
“videographic medium.”* In another article published a year
later, he refines this claim: “From a larger perspective, we realized

that the development of SuperPaint signaled the beginning of the
synergy of two of the most powerful and pervasive technologies
ever invented: digital computing and video or television.”*

This statement is amazingly perceptive. When Shoup was
writing this in 1980, computer graphics were used in television

42 Richard Shoup, “SuperPaint: An Early Frame Buffer Graphics Systems,” IEEE
Annals of the History of Computing 23, issue 2 (April-June 2001), p. 32-7,
http://www.rgsh()up.com/pr()f/Supcrl’nint//\nnuls_ﬁn;\l.pdf; Richard Shoup,
“SuperPaint...The Digital Animator,” Datamation (1979), http://www.rgshoup.
C()m/prof/Supcr[’ﬂinr/Dammnti(m.pdf.

Q  Shoup, “SuperPaint...The Digital Animator,” p. 152.
4 Ibid., p. 156.
45 Shoup, “SuperPaint: An Early Frame Buffer Graphics System,” p. 32.




920 SOFTWARE TAKES COMMAND

SuperPaint menu, 1975.

broadcasts just a handful of times. And while in the next decade
their use became more common, only in the middle of the 1990s
did the synergy Shoup predicted truly became visible. As we will
see in the chapter on After Effects below, the result was a dramatic
reconfiguration not just of the visual languages of television but of
all visual techniques invented by humans up to that point. [n_other
words, what began as a new “videographic medium” in 1973 ha
eventually changed all visii: i

Ut even if we forget about SuperPaint’s revolutionary ability
to combine graphics and video, and discount its new tools such
resizing, moving, copying, etc., we are still dealing with a new
creative medinm (Smith’s term). As Smith pointed out, this medium
is the digital frame buffer,* a special kind of computer memory

% Alvy Ray Smith, “Digital Paint Systems: An Anecdotal and Historical Overview,”
IEEE Annals of the History of Computing. 2011, http://accad.osu.edu/~waynec/
history/PDFs/paint.pdf

m

ALAN KAY’S UNIVERSAL MEDIA MACHINE 91

designed to hold images represented as an array of pixels (today
a more common name is graphics card). An_artist using a_paint
system is_ modifying pixel values in a frame buffer—regardless of
what particular operation or tool s/he is employing at the moment.
This opens up a door to all kinds of new image creation and
modification operations, which follow different logic than physical
painting. The telling examples of this can be found in a paint system
called Paint developed by Smith in 1975-6. In Smith’s own words,
“Instead of just simulating painting a stroke of constant color, I
extended the notion to mean ‘perform any image manipulation
you want under the pixels of the paintbrush.”” Beginning with
this conceptual generalization, Smith added a number of effects
which still used a paintbrush tool but actually no longer referred
to painting in a physical world. For instance, in Paint “any image
of any shape could be used as a brush.” In another example, Smith
added “‘not paint’ that reversed the color of every pixel under the
paintbrush to its color complement.” He also defined ‘smear paint’
hat averaged the colors in the neighborhood of each pixel under
he brush and wrote the result back into the pixel.” And so on.

Rus, the instances where the paintbrush tool behaved more fike a
-eal physical paintbrush were just particular cases of a much larger
niverse of new behaviors made possible in a new medium.

The permanent extendibility

As we saw, Sutherland, Nelson, Engelbart, Kay, and other pioneers
of computational media have added many previously non existent
properties to media that they have simulated in a computer.
The subsequent generations of computer scientists, hackers, and
designers added many more properties—but this process is far
from finished. And there is no logical or material reason why it
will ever be finished. It is the “nature” of computational media
that it is open-ended and that new techniques are continuously
being invented.

To add new properties to physical media requires modifying
its physical substance. But since computational media exists as

HiTbtdiy pvil8.




92 SOFTWARE TAKES COMMAND

software, we can add new properties or even invent new types of
media by simply changing existing or writing new software. Or by
adding plug-ins and extensions, as programmers have been doing
it with Photoshop and Firefox, respectively. Or by putting existing
software together. (For instance, starting in 2006, thousands of
people extended the capacities of mapping media by creating
software mashups which combine the services and data provided
by Goggle Maps, Flickr, Amazon, other sites, and media uploaded
by users.)

In short, “new media” is “new” because new properties (i.e.,
new software techniques) can always be easily added to it. Put
differently, in industrial (i.e. mass-produced) media technologies,
“hardware” and “software” were one and the same thing. For
example, the book pages were bound in a particular way that fixed
the order of pages. The reader could not change this order nor
the level of detail being displayed a la Engelbart’s “view control.”
Similarly, the film projector combined hardware and what we now
call a “media player” software into a single machine. In the same
way, the controls built into a twentieth-century mass-produced
camera could not be modified at the user’s will. And although
today the users of a digital camera similarly cannot easily modify
the hardware of their camera, as soon as they transfer the pictures
into a computer they have access to endless number of controls and
options for modifying their pictures via software.

In the nineteenth and twentieth centuries the normally rigid
industrial media was fluid in two situations. First, when a new
media was being first developed: for instance, the invention of
photography in the 1820s-1840s. Second, when artists would
systematically experiment with and “open up” already industri-
alized media—such as the experiments with film and video during
the 1960s that came to be called “Expanded Cinema.”

What used to be separate moments of experimentations with
media during the industrial era became the norm in a software
society. In other words, the computer legitimizes experimen-
tation with media. Why is this so? What differentiates a modern
digital computer from any other machine—including industrial
media machines for capturing and playing media—is separation
of hardware and software. [f is because an endless number of
different programs performin
run on the same type of machine, t

at that machine—i.e. a digital

ALAN KAY'S UNIVERSAL MEDIA MACHINE 93

computer—is used so widely today. Consequently, the constant
media software, is

computational media 1s “avant-garde” since it 1s constantly being
extended and thus redefined.
. in modern culture —experimental” and “avant-garde” were
opposed to normalized and stable, this opposition largely disap-
| pears in software culture. And the role of the media avant-garde
| is performed no longer by individual artists in their studios but by
a variety of players, from very big to very small—from companies
such as Microsoft, Adobe, and Apple to independent programmers,
‘hackers, and designers.

But this process of continual invention of new algorithms does
not just move in any direction. If we look at contemporary media
software—CAD, computer drawing and painting, image editing,
word processors—we will see that most of their fundamental
principles were already developed by the generation of Sutherland
and Kay. In fact the very first interactive graphical editor—
Sketchpad—already contains most of the genes, so to speak, of
contemporary graphics applications. As new techniques continue
to be invented they are layered over the foundations that were
gradually put in place by Sutherland, Engelbart, Kay, and others in
the 1960s and 1970s.

Of course we are not dealing here only with the history of ideas.
Various social and economic factors—such as the dominance
of the media software market by a handful of companies or the
wide adoption of particular file formats — also constrain possible
directions of software evolution. Put differently, today software
development is an industry and as such it is constantly balancing
between stability and innovation, standardization and exploration
of new possibilities. But it is not just any industry. New programs
ican be written and existing programs can be extended and modified
(if the source code is available) by anybody who has programming

S S G

| skills and access to a computer, a programming language and.

a compiler. In other words, today software is fundamentally
malleable in a way that twentieth-century industrially produced

-

P——

“open hardware” movement promise to bring such flexibility to
physical objects as well, but it will be a while before you can print
a whole ready-to-drive-car on your home 3D printer.)

_objects were notf{The emergence of consumer 3D printing and the ™

i



s

94 SOFTWARE TAKES COMMAND

Although Turing and Von Neumann formulated this funda-
mental extendibility of software in theory, its contemporary
practice—hundreds of thousands of people daily involved in
extending the capabilities of computational media—is a result of
a long historical development. This development took us from the
few early room-sized computers, which were not easy to reprogram
to a wide availability of cheap computers and programming tools
decades later. This democratization of software development was
at the core of Kay’s vision. Kay was particularly concerned with
how to structure programming tools in such a way that would
make development of media software possible for ordinary users.
For instance, at the end of the 1977 article I have already exten-
sively quoted, he and Goldberg write, “We must also provide

(enough already-written general tools so that a user need not start

| from scratch for most things she or he may wish to do.”

" Comparing the process of continuous media innovation via new
software to the history of earlier, pre-computational media reveals a
new logic at work. According to a commonplace idea, when a new
medium is invented it first closely imitates already existing media,
before discovering its own language and aesthetics. Indeed, the
first Gutenberg Bible closely imitated the look of the handwritten
manuscripts; early films produced in the 1890s and 1900s mimicked
the presentational format of theatre by positioning the actors on the
invisible shallow stage and having them face the audience. Slowly,
printed books developed a different way of presenting information;
similarly cinema also developed its own original concept of narrative
space. Through repetitive shifts in points of view presented in subse-
quent shots, the viewers were placed inside this space—thus literally
finding themselves inside the story.

Can this logic apply to the history of computer media? As
theorized by Turing and Von Neumann, the computer is a general-
purpose simulation machine. This is its uniqueness and its difference
from all other machines and previous media. This means that the
idea that a new medium gradually finds its own language cannot
apply to computer media. If this were true it would go against
the very definition of a modern digital computer. This theoretical
argument is supported by practice. The history of computer media
so far has been not about arriving at some standardized language—
as, for instance, happened with cinema—but rather about the
gradual expansion of uses, techniques, and possibilities. Rather

ALAN KAY’S UNIVERSAL MEDIA MACHINE 95

than arriving at a particular language, we are gradually discovering
that the computer can speak more and more languages.

If we are to look more closely at the early history of computer
media—for instance, the way we have been looking at Kay’s ideas
and work in this text—we will discover another reason why the idea
of a new medium gradually discovering its own language does not
apply to computer media. The systematic practical work on making
a computer simulate and extend existing media (Sutherland’s
Sketchpad, the first interactive word processor developed by
Engelbart’s group, etc.) came after computers had already been
put to multiple uses—performing different types of calculations,
solving mathematical problems, controlling other machines in
real time, running mathematical simulations, simulating some
aspects of human intelligence, and so on. (We should also mention
the work on SAGE by MIT Lincoln Laboratory which, by the
middle of the 1950s, had already established the idea of inter-
active communication between a human and a computer via a
screen with a graphical display and a pointing device. In fact,
Sutherland developed Sketchpad on a TX-2, the new version of
a larger computer MIT constructed for SAGE.) Therefore, when
the generation of Sutherland, Nelson, and Kay started to create
“new media,” they built it on top, so to speak, of what computers
were already known to be capable of. Consequently they added
new properties into physical media they were simulating right
away. This can be very clearly seen in the case of Sketchpad.
Understanding that one of the roles a computer can play is that
of a problem solver, Sutherland built in a powerful new feature
that never before existed in a graphical medium—satisfaction of
constraints. To rephrase this example in more general terms, we
can say that rather than moving from an imitation of older media
to finding its own language, computational media was from the
very beginning speaking a new language.)

In other words, the pioneers of computational media did
not have the goal of making the computer into a ‘remediation
machine” which would simply represent older media in new
ways. Instead, knowing well the new capabilities provided by
digital computers, they set out to create fundamentally new kinds
of media for expression and communication. These new media
would use as their raw “content” the older media which already
served humans well for hundreds and thousands of years—written




96 SOFTWARE TAKES COMMAND

language, sound, line drawings and design plans, and continuous
tone images (i.e. paintings and photographs). But this does not
compromise the newness of new media. Computational media uses
these traditional human media simply as building blocks to create
previously unimaginable representational and information struc-
tures, creative and thinking tools, and communication options.

Although Sutherland, Engelbart, Nelson, Kay, and others
developed computational media on top of already existing devel-
opments in computational theory, programming languages, and
computer engineering, it would be incorrect to conceive the history
of such influences as only going in one direction—from already
existing and more general computing principles to particular
techniques of computational media. The inventors of computa-
tional media had to question many, if not most, already established
ideas about computing. They have defined many new fundamental
concepts and techniques of how both software and hardware
function, thus making important contributions to hardware and
software engineering. A good example is Kay’s development of
Smalltalk, which for the first time systematically established a
paradigm of object-oriented programming. Kay’s rationale to
develop this new programming language was to give a unified
appearance to all applications and the interface of the PARC
system and, even more importantly, to enable its users to quickly
program their own media tools. (According to Kay, an object-
oriented illustration program written in Smalltalk by a particularly
talented 12-year-old girl was only a page long.**) Subsequently
the object-oriented programming paradigm became very popular
and object-oriented features have been added to most popular
languages such as C.

Looking at the history of computer media and examining the
thinking of its inventors makes it clear that we are dealing with the
opposite of technological determinism. When Sutherland designed
Sketchpad, Nelson conceived hypertext, Kay programmed a paint
program, and so on, each new property of computer media had

!to be imagined, implemented, tested, and refined. In other words,
| these characteristics did not simply come as an inevitable result
| of a meeting between digital computers and modern media.

4 Alan Kay, Doing with Images Makes Symbols (University Video Communications,
1987), videotaped lecture, http:/archive.org/details/AlanKeyD 1987/

ALAN KAY’S UNIVERSAL MEDIA MACHINE 97

Computational media had to be invented, step-by-step. And it was
invented by people who were looking for inspiration in modern
art, literature, cognitive and education psychology, and theory
of media as much as technology. For example, Kay recalls that
reading McLuhan’s Understanding Media led him to a realization
that a computer can be a medium rather than only a tool.*
~Accordingly, the opening section of Kay and Goldberg’s article is

{ called “Humans and Media,” and it does read like media theory.

But this is not a typical theory that only describes the word, as
it currently exists. Similar to Marx’s analysis of capitalism in his
works, here the analysis is used to create a plan for action for
building a new world—in this case, enabling people to create new
media.
"~ But the most important example of such non-deterministic
development is the invention of the modern interactive graphical
human-computer interface itself by Sutherland, Engelbart, Kay
and others. None of the key theoretical concepts of modern
computing as developed by Turing and Von Neumann called for
an interactive interface. In the late 1940s and 1950s the MIT
Lincoln Laboratory developed interactive graphical computers
used in SAGE—the control centers created around the US to
collect information from radar stations and coordinate a counter-
attack. But the SAGE interface was designed for very particular
tasks and it had no effect on the development of commercial
computing. It did, however, lead to a new smaller machine: the
TX-2, used by young students at MIT (including Sutherland) to
explore what can be done with an “interactive computer”—i.e.
a computer which had a visual display. Some students started to
create interactive games including the famous Spacewar (1960).
Sutherland was one of these students who were exploring the
possibilities of visual interactive computing using the TX-2. He
went to create Sketchpad (his Ph.D. thesis) which influenced other
pioneers of cultural computing in the 1960s including Kay. But
the theoretical road that led from SAGE to modern GUI through
PARC was a very long one.

According to Kay, the key step for him and his group was
to_start_thinking about computers as a medium for learning,

N# Alan Kay, “User Interface: A Personal View,” p. 192-3.

—



98 SOFTWARE TAKES COMMAND

experimentation, and artistic expression which can be used not
Just by adults but also by “children of all ages.”* Kay was strongly
influenced by the theory of the cognitive psychologist Jerome
Bruner. Bruner developed his theory by redefining the ideas of
Jean Piaget who postulated that children go through a number of
distinctive intellectual stages as they develop: a kinesthetic stage,
a visual stage, and a symbolic stage. But while Piaget thought
that each stage only exists for a particular period during a child’s
development only to be completely replaced by a new stage, Bruner
suggested that separate mentalities that correspond to these stages
continue to exist as the child grows. That is, the mentalities do not
replace each other but are added. Bruner gave slightly diffcrc.nt
names to these different mentalities: enactive, iconic, and symbolic.
While each mentality has developed at different stages of human
evolution, they continue to co-exist in an adult. -

Kay’s interpretation of this theory was that a user interface
should appeal to all these three mentalities. In contrast to a
command-line interface, which is not accessible for children and
forces the adult to use only symbolic mentality, the new interface
should also make use of emotive and iconic mentalities. Kay also
drew on a number of studies on creativity in math, science, music,
art and other areas which suggested that initial creative work
is done mostly in iconic mentality and also in enactive.’’ This
provided additional motivation for the idea that if computers were
to function as a dynamic medium for learning and creativity they
should allow their users to think not only through symbols but also
through actions and images.

Following Kay’s interpretation of Bruner’s work, the group
at PARC mapped Bruner’s theory of multiple mentalities into
the interface technologies in the following way. Mouse_activates
enactive mentality (know where you are, manipulate). Icons and

windows activate iconic mentality (recognize, compare, configure.)

“Finally, Smalltalk programming language allows fﬁ)r f]_l_cwuvse

* Alan Kay, “A Personal Computer for Children of All Ages,” Proceedings of
the ACM National Conference, Boston, 1972, http://www.mprove.de/diplom/gui/
kay72.html

1 Alan Kay, “User Interface: A Personal View,” p. 195.

ALAN KAY’S UNIVERSAL MEDIA MACHINE 99

of symbolic mentality (tie together long chains of reasoning,
abstract,PT——

“In actual use, a contemporary GUI involves constant interplay
between different mentalities. You use a mouse to move around
the screen as though it is a physical space and point at screen
objects. All objects are represented by visual icons. You double-
click on an icon to activate it or, if it is a folder icon, to examine
its contents. This can be interpreted as an equivalent of picking
up and examining a physical object in a real world. After a folder
window opens, you may switch between different views, looking
at the data as icons and alternatively as a list, then sort the list
in different ways to examine file names, creation dates and other
symbolic information (i.e. text). If you did not find the files you
were looking for, you may then use a search function to search the
whole computer—possibly defining multiple options and carefully
choosing the search terms (symbolic mentality). As these examples
demonstrate, the user is constantly switching between different
mentalities using whatever works best at a given moment.

But in addition to the general interface principles, other key
techniques that were developed by Kay’s group can also be under-
stood as enabling the use of different mentalities in combination
with each other. For instance, the user interface developed at PARC
was the first to run on a bit-mapped display—which meant not
only giving users the ability to move the pointer and open multiple
windows but also to write simulation programs in Smalltalk which
could display their results visually right on the screen. By making
a change in the code a user would be able to see the visual result
of this change in the image produced by the program. Today this
ability is fundamental to computer use in all areas of science (in
particular, the use of interactive visualization and data analysis
software). And of course, we should not forget about all the media
editors created at PARC: a paint program, an illustration program,
a music editor, etc. These media editors gave the users the ability
to switch between different mentalities in a way not available in
the physical media. For instance, the objects in the animation
program could be drawn by hand or by writing code in Smalltalk.
As Kay and Goldberg point out, “The control of the animation

52 Ibid., p. 197.




| &

100 SOFTWARE TAKES COMMAND

could be easily done from a Smalltalk simulation. For example,
an animation of objects bouncing in a room is most easily accom-
plished by a few lines of Smalltalk code that express the class of
bouncing objects in physical terms.”*’

In defining this new type of user interface, Kay and his collabo-
rators simultaneously created a radically new type of media. If we
are to agree with Bruner’s theory of multiple mentalities and Kay’s
interpretation of this theory, we should conclude that the new
computational media that he helped to invent can do something
no previous media can—activate_our multiple mentalities which

}all play a role in learning “and creativity, allowing a user to
 Femploy whatever works best at any given momnent” and to rapldl
" switch between them as necessary. This may explam the success
and popularity of the GUI, which, forty years after its invention,
continues to dominate our interaction with computers. People
| prefer it not because it is “easy” or “seamless” or “intuitive.” It
| is successful because it was designed to help them think, discover,
" and create new concepts using not just one type of mentality but all
| of them together. In short, while many HCI experts and designers
continue to believe that the ideal human-computer interface should
be invisible and get out of the way to let users do their work,
looking at the theories of Kay and Goldberg that were behind GUI
design gives a very different way of understanding an interface’s
identity. Kay and his colleagues at PARC have conceived GUI as a
medium designed in its every detail to facilitate learning, discovery,
and creativity.

Given the overall emphasis of information society on constant
innovation, continuous learning, and creativity, it is only appro-
priate that as this society was coming into existence, a new
medium was bcing invcnred speciﬁca]ly to facilitate these needs

fof Post- Industrtalh Society; right around that time at PARC Kay,
iy ‘Goldberg, ‘Chuck Thacker, Dan Ingalls, Larry Tesler, and other
members of the Learning Research Group created the paradigm
of modern computing. Or rather, they reinvented the computer—
from a fast calculator that can only work on tasks articulated

53 Kay and Goldberg, “Personal Dynamic Media,” p. 399.

i

|

ALAN KAY’'S UNIVERSAL MEDIA MACHINE 101

beforehand to an interactive support system for thinking and
discovery. In short: from a tool to a metamedium.

Unfortunately, when GUI became the commercially successful
paradigm following the success of Apple’s Mac computers, intro-
duced in 1984, the intellectual origins of GUI were forgotten.
Instead, GUI was justified using a simplistic idea that since
computers are unfamiliar to people, we should help them by
making interface intuitive by making it mimic something users
are already well familiar with—the physical world outside of a
computer (which in reality was an office environment with folders,
desks, printers, etc.) Surprisingly, even in recent years— when
“born digital” generations were already using computer devices
even before they ever set foot in an office—this idea was still used
to explain GUI. For example, Apple’s iPhone Human Interface

1 guidelines (March 2010) advise developers: “When possible, model

your application’s objects and actions on objects and actions in the
real world. This technique especially helps novice users quickly
grasp how your application works. Folders are a classic software

| metaphor. People file things in folders in the real world, so they

S,‘ immediately understand the idea of putting data into folders on

| a computer.”** The irony of this statement is that these Interface
\guidelines are also aimed at the developers of iPad—which clearly
represents yet another step in migration from the world of physical
print to all-digital environment. It is as though we are asked to
_remember and cherish the older medla_ and erase it at the same
time.

The computer as a metamedium

As we have established, the development of computational media
runs contrary to previous media history. But in a certain sense,
the idea of a new media gradually discovering its own language
actually does apply to the history of computational media after
all. And just as with printed books and cinema, this process took a

* http://developer.apple.com/iphone/library/documentation/UserExperience/
Conceptual/MobileHIG/PrinciplesAndCharacteristics/PrinciplesAnd Characteristics.
html#//apple_ref/doc/uid/TP40006556-CH7-SW1 (April 5, 2010).



102 SOFTWARE TAKES COMMAND

few decades. When the first computers were built in the middle of
the 1940s, they could not be used as media for cultural represen-
tation, expression, and communication. Slowly, through the work
of Sutherland, Engelbart, Nelson, Papert, and others in the 1960s,
the ideas and techniques were developed that made computers
into a cultural machine. One could create and edit text, make
drawings, move around a virtual object, etc. And finally, when
Kay and his colleagues at PARC systematized and refined these
techniques and put them under the umbrella of a GUI (making
computers accessible to multitudes) a digital computer finally was
given its own language—in cultural terms. In short, only when
a computer became a cultural medium—rather than merely a
versatile machine—could it be so used.

Or rather, it became something that no other media had been
before. For what had emerged was not yet another media, but as
Kay and Goldberg insist in their article, something qualitatively
different and historically unprecedented. To-mark this difference,
they introduce a new term—“metamedium.”

This metamedium is tnique in a number of different ways. One of
them I have already discussed in detail—it can represent most other
media while augmenting them with many new properties. Kay and
Goldberg also name other properties that are equally crucial. The
new metamedium is “active—it can respond to queries and experi-
ments—so that the messages may involve the learner in a two-way
conversation.” For Kay who was strongly interested in children
and learning, this property was particularly important since, as

he puts it, it “has never been available before except through the
medium of an individual teacher.” % Further, the new metamedium
can handle “virtually all of its owner’s information-related needs.”
(I have already discussed the consequence of this property above.)
It can also serve as “a programming and problem solving tool”
and “an interactive memory for the storage and manipulation of
data.”’¢ But the property that is the most important from the point
of view of media history is that the computer metamedium is simul-
tancously a set of different media and a system for generating new
media tools and new types of media. In other words, a computer

55 Kay and Goldberg, “Personal Dynamic Media,” p. 394.
26 Thid e P a93s

“ tons  consistent, facilitating quick e

ALAN KAY’S UNIVERSAL MEDIA MACHINE 103

can be used to creat
€ new tools for work; i
Wity ; TRIngG with the media j
. t}jl/ep(:owc.ies as well as to develop new not-yet-invented pris' i
e . ol . e
pening to his book Expressive Processing, Noah Wardrilg.

Iruln perfeclly d l‘l(,l]Lu(fS IIHS lll(f]a-ge erative Sl)e(l i( II}/ Ui
a
CO“II)UI@] S:

A computer ¢ i
Bliics ‘ i
kCYb()a[r)d ang ;Iz SJmplate A typewriter—getting input from the
P raggmg pixels on the screen to shape the corre
ers—but it can also oo f _
i 50 8o far beyond a typewriter
moveni,m 2;111] fonts,.aut()manc spelling correctionyppainless’
anuscript sections (th h si s
prmie oy : rough simulations of “cut”
rephcz”) ; ),dprogramﬁmb]e transformations (such as “find 1]r:d
2 » and even collaboratiy i : l IL
: ative authoring by |; i
3 b e g by large, dispers
ggomg)m(as with projects like Wikipedia). This is Vgh;t mpec?ed
e : s oder
i i (ni()re” lengthll)./ called “stored-program elecrr()niz
i Ofpu ensi) are designed to make possible: the continual
et i nev: machines, opening new possibilities throu :h
1 of new sets of computational processes 57 i

Using the ans . ! ¢
in thi wa f“;#;gy W~lt.h print literacy, Kay motivates this pro
mater\ia]s y: 1 e ability to ‘read’ a medium means you C‘]F; i
s n;m( tools generated by others. The 'zibiliry to v:/rirZCFLbS
eans you can generat. : in a
You e &enerate materials and tools for others
at PARC 1:4‘/1: b}?thdto L Accbord";hél‘}.’;ﬁKay"s key E:lfllci::r
Wb A]‘]‘ tdg cvglf)pment of the Smalltalk programming
whitclics 1'1'1 o T1]1l€ ]llz edlt.mg applications and the GUI itself we .
alltalk. This made all the interfaces of a”\‘lpp[iz.:(
IR arning of new programs
i 1”03 Importantly, according to Kay’s vision pSmﬁl?tmlSI\.
allow even novice users t i 8 e i s gy
- ‘ S to write the . -
th Ir own t !
eir own media. In other P ools and define

! media editing applicati
that would be provided with a compu e

ter, were to S€rve 21!80 as

examl)les i“gl)ll .llg use 1
, l i 3 Spiri 1 S to m()dl y l'hcm and t A% | 3|
JPP 1cat 10ns. O rite th(,ll‘ own

57 & 1 " 1
f;hfah Wzlrdrvxp—}‘rum, Expressive Processing:
"i(”;\{so}(”mn’ Studies (The MIT Press, 2009) :
*® Alan Kay, “Use S0 :
¥, “User Interface: A Personal View,” in The At of Human-C,
iman-Computer

lﬂ[(}/ﬂ((’, Desi 1 . a Lau e 24 n Y, s P .
2, esign, ed B end .aurel R 1ding A C O & J
(’ 1 I] 1 ( cading, M > A 1dns I W(’QI > | 990 P 19

Digital Fictions, Computer Games




104 SOFTWARE TAKES COMMAND

Accordingly, the large part of Kay and Goldberg’s paper is
devoted to description of software developed by the users of
their system: “an animation system programmed by animators”,
“a drawing and painting system programmed by a child,” “a
hospital simulation programmed by a decision-theorist,” “an audio
animation system programmed by musicians”, “a musical score
capture system programmed by a musician”, “electronic circuit
design by a high school student.” As can be seen from this list,
(which corresponds to the sequence of examples in the article), Kay
and Goldberg deliberately juxtaposed different types of users—
professionals, high school students, and children—in order to
show that everybody could develop new tools using the Smalltalk
programming environment.

The sequence of examples also strategically juxtaposes media
simulations with other kinds of simulations in order to emphasize
that simulation of media is only a particular case of the computer’s
general ability to simulate all kinds of processes and systems. This
juxtaposition of examples gives us an interesting way to think
about computational media. Just as a scientist may use simulation
to test different conditions and play different what/if scenarios, a
designer, a writer, a musician, a filmmaker, or an architect working
with computer media can quickly “test” different creative direc-
tions in which the project can be developed as well as see how
modifications of various “parameters” affect the project. The latter
is particularly easy today since the interfaces of most media editing
software not only explicitly present these parameters but also
simultaneously give the user the controls for their modification. For
instance, when the Formatting Palette in Microsoft Word shows
the font used by the currently selected text, it is displayed in a
column next to all other fonts available. Trying different fonts is as
easy as scrolling down and selecting the name of a new font.

Giving users the ability to write their own programs was a crucial
part of Kay’s vision for the new “metamedium” he was inventing
at PARC. According to Noah Wardrip-Fruin, Engelbart’s research
program was focused on a similar goal: “Engelbart envisioned users
creating tools, sharing tools, and altering the tools of others.””

 Noah Wardrip-Fruin, introduction to Douglas Engelbart and William English,
“A Research Center for Augmenting Human Intellect” (1968), New Media Reader,
D282,

|

[

ALAN KAY'S UNIVERSAL MEDIA MACHINE 105

Unfortunately, when in 1984 Apple shipped Macintosh, which
was to become the first commercially successful personal computer
modeled after the PARC system, it did not have an easy-to-use
programming environment. HyperCard, written for Macintosh in
1987 by Bill Atkinson (who was one of PARC’s alumni), gave users
the ability to quickly create certain kinds of applications—but it did
not have the versatility and breadth envisioned by Kay. Only more
recently, as the general computer literacy has widened and many
new high-level programming languages have become available—
Perl, PHP, Python, JavaScript, etc.—have more people started to
create their own tools by writing software. A good example of a
contemporary programming environment, very popular among
artists and designers and which, in my view, is close to Kay’s vision,
is Processing.®” Built on top of the Java programming language,
Processing features a simplified programming style and an extensive
library of graphical and media functions. It can be used to develop
complex programs and also to quickly test ideas. Appropriately, the
official name for Processing projects is sketches.®! In the words of
Processing inventors and main developers Ben Fry and Casey Reas,
the language’s focus is “on the ‘process’ of creation rather than
end results.”® Another popular programming environment that
‘similarly enables quick development of media projects is Max/MSP
and its successor PD—both developed by Miller Puckette.

At the end of the 1977 article that served as the basis for our
discussion in this chapter, Kay and Goldberg summarize their
arguments in the phrase—which in my view is the best formulation
we have had so far—of what computational media is artistically
and culturally. They call the computer “a metamedium” whose
content is “a wide range of already-existing and not-yet-invented
media.” In another article published in 1984 Kay unfolds this
definition. As a way of concluding this chapter, I would like to
quote this longer definition which is as accurate and inspiring
today as it was when Kay wrote it:

It [a computer] is a medium that can dynamically simulate the
details of any other medium, including media that cannot exist

0 www.processing.org
61 htep://www.processing.org/reference/environment/
62 http://wiki.processing.org/w/FAQ



106 SOFTWARE TAKES COMMAND

physically. It is not a tool, though it can act like many tools. It
is the first metamedium, and as such it has degrees of freedom
for representation and expression never before encountered and
as yet barely investigated.®’

CHAPTER TWO

Understanding metamedia

“It [the electronic book] need not be treated as a simulated
paper book since this is a new medium with new properties.”
Kay and Goldberg, “Personal Dynamic Media,” 1977

Today Popular Science, published by Bonnier and the largest
science+tech magazine in the world, is launching Popular
Science+ — the first magazine on the Mag+ platform, and you
can get it on the iPad tomorrow...What amazes me is that you
don’t feel like you’re using a website, or even that you’re using
an e-reader on a new tablet device — which, technically, is what
it is. It feels like you're reading a magazine.” (emphasis is in the
original.)
“Popular Science+,” posted on April 2, 2010.
http://berglondon.com/blog/ZO10/04/02/p0pularscienceplus/

The building blocks

[ started putting this book together in 2007. Today is April 3, 2010,
and I am editing this chapter. Today is also an important day in the
history of media computing (which started exactly forty years ago
with Ivan Sutherland’s Sketchpad)—Apple’s iPad tablet computer
first went on sale in the US on this date. During the years I was
writing and editing the book, many important developments made
Alan Kay’s vision of a computer as the “first metamedium” more
real—and at the same time more distant.

3 Alan Kay, “Computer Software,” Scientific American (September 1984), p. 52.
Quoted in Jean-Louis Gassée, “The Evolution of Thinking Tools,” in The Art of
Human-Computer Interface Design, p. 225.




