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Chapter 7

Logo’s Roots:
Piagetand Al

THE READER has already met a variety of learning situations
drawn together by a common set of ideas about what makes for ef-
fective learning. In this chapter we turn directly to these ideas and
to the theoretical sources by which they are informed. Of these we
focus on two: first, the Piagetian influence, and second, the influ-
ence of computational theory and artificial intelligence.

I have previously spoken of “Piagetian learning,” the natural,
spontaneous learning of people in interaction with their environ-
ment, and contrasted it with the curriculum-driven learning char-
acteristic of traditional schools. But Piaget’s contribution to my
work has been much deeper, more theoretical and philosophical. In
this chapter I will present a Piaget very different from the one most
people have come to expect. There will be no talk of stages, no em-
phasis on what children at certain ages can or cannot learn to do.
Rather I shall be concerned with Piaget the epistemologist, as his
ideas have contributed toward the knowledge-based theory of
learning that I have been describing, a theory that does not divorce
the study of how mathematics is learned from the study of math-
ematics itself.

I think these epistemological aspects of Piaget’s thought have
been underplayed because up until now they offered no possibilities
for action in the world of traditional education. But in a computer-
rich educational environment, the educational environment of the
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next decade, this will not be the case. In chapter 5 and in the devel-
opment of the Turtle idea itself we saw examples of how an episte-
mological inquiry into what is fundamental in a sector of math-
ematics, the mathematics of differential systems, has already paid
off in concrete, effective educational designs. The Piaget of the
stage theory is essentially conservative, almost reactionary, in em-
phasizing what children cannot do. I strive to uncover a more revo-
lutionary Piaget, one whose epistemological ideas might expand
known bounds of the human mind. For all these years they could
not do so for lack of a means of implementation, a technology
which the mathetic computer now begins to make available.

The Piaget as presented in this chapter is new in another sense as
well. He is placed in a theoretical framework drawn from a side of
the computer world of which we have not spoken directly, but
whose perspectives have been implicit throughout this book, that of
artificial intelligence, or AL The definition of artificial intelligence
can be narrow or broad. In the narrow sense, Al is concerned with
extending the capacity of machines to perform functions that
would be considered intelligent if performed by people. Its goal is
to construct machines and, in doing so, it can be thought of as a
branch of advanced engineering. But in order to construct such ma-
chines, it is usually necesary to reflect not only on the nature of
machines but on the nature of the intelligent functions to be
performed.

For example, to make a machine that can be instructed in natu-
ral language, it is necessary (o probe deeply into the nature of lan-
guage. In order to make a machine capable of learning, we have to
probe deeply into the nature of learning. And from this kind of re-
search comes the broader definition of artificial intelligence: that of
a cognitive science. In this sense, Al shares its domain with the
older disciplines such as linguistics and psychology. But what is dis-
tinctive in Al is that its methodology and style of theorizing draw
heavily on theories of computation. In this chapter we shall use this
style of theorizing in several ways: first, to reinterpret Piaget; sec-
ond, to develop the theories of learning and understanding that in-
form our design of educational situations; and third, in a somewhat
more unusual way. The aim of Al is to give concrete form to ideas
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about thinking that previously might have seemed abstract, even
metaphysical. It is this concretizing quality that has made ideas
from Al so attractive to many contemporary psychologists. We
ipropose to teach Al to children so that they, too, can think more
‘concretely about mental processes. While psychologists use ideas
from Al to build formal, scientific theories about mental processes,
children use the same ideas in a more informal and personal way to
think about themselves. And obviously I believe this to be a good
thing in that the ability to articulate the processes of thinking en-
ables us to improve them.

~Piaget has described himself as an epistemologist. What does he
mean by that? When he talks about the developing child, he is real-
ly talking as much about the development of knowledge. This state-
ment leads us to a contrast between epistemological and psycho-
logical ways of understanding learning. In the psychological
perspective, the focus is on the laws that govern the learner rather
than on what is being learned. Behaviorists study reinforcement
schedules, motivation theorists study drive, gestalt theorists study
good form. For Piaget, the separation between the learning process
and what is being learned is a mistake. To understand how a child
learns number, we have to study number. And we have to study
number in a particular way: We have to study the structure of
number, a mathematically serious undertaking. This is why it is not
at all unusual to find Piaget referring in one and the same para-
graph to the behavior of small children and to the concerns of theo-
retical mathematicians. To make more concrete the idea of study-
ing learning by focusing on the structure of what is learned, we
look at a very concrete piece of learning from everyday life and see
how different it appears from a psychological and from an episte-
mological perspective.

We will consider learning to ride a bicycle. If we did not know
better riding a bicycle would seem to be a really remarkable thing.
What makes it possible? One could pursue this question by study-
ing the rider to find out what special attributes (speed of reaction,
complexity of brain functioning, intensity of motivation) contribute
to his performance. This inquiry, interesting though it might be, is
irrelevant to the real solution to the problem. People can ride bicy-
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cles because the bicycle, once in motion, is inherently stable. A bi-
cycle without a rider pushed off on a steep downgrade will not fall
over; it will run indefinitely down the hill. The geometrical con-
struction of the front fork ensures that if the bicycle leans to the
left the wheel will rotate to the left, thus causing that bicycle to
turn and produce a centrifugal force that throws the bicycle to the
right, counteracting the tendency to fall. The bicycle without a rid-
er balances perfectly well. With a novice rider it will fall. This is
because the novice has the wrong intuitions about balancing and
freezes the position of the bicycle so that its own corrective mecha-
nism cannot work freely. Thus learning to ride does not mean
learning to balance, it means learning not to unbalance, learning
not to interfere.

What we have done here is understand a process of learning by
acquiring deeper insight into what was being learned. Psychologi-
cal principles had nothing to do with it. And just as we have under-
stood how people ride bicycles by studying bicycles, Piaget has
taught us that we should understand how children learn number
through a deeper understanding of what number is.

Mathematicians interested in the nature of number have looked
at the problem from different standpoints. One approach, associat-
ed with the formalists, seeks to understand number by setting up
axioms to capture it. A second approach, associated with Bertrand
Russell, seeks to define number by reducing it to something more
fundamental, for example, logic and set theory. Although both of
these approaches are valid, important chapters in the history of
mathematics, neither casts light on the question of why number is
learnable. But there is a school of mathematics that does do so, al-
though this was not its intention. This is the structuralism of the
Bourbaki school." Bourbaki is a pseudonym taken by a group of
French mathematicians who set out to articulate a uniform theory
for mathematics. Mathematics was to be one, not a collection of
subdisciplines each with its own language and line of development.
The school moved in this direction by recognizing a number of
building blocks that it called the “mother structures.” These struc-
tures have something in common with our idea of microworlds.
Imagine a microworld in which things can be ordered but have no

159



MINDSTORMS

{gother properties. The knowledge of how to work the world is, in
terms of the Bourbaki school, the mother structure of order. A sec-

: ond microworld allows relations of proximity, and this is the moth-

er structure of topology. A third has to do with combining entities

| to produce new entities; this is the algebraic microstructure. The
Bourbaki school’s unification of mathematics is achieved by seeing
more complex structures, such as arithmetic, as combinations of
simpler structures of which the most important are the three moth-
er structures. This school had no intention of making a theory of
learning. They intended their structural analysis to be a technical
tool for mathematicians to use in their day-to-day work. But the
theory of mother structures is a theory of learning. It is a theory of
how number is learnable. By showing how the structure of arithme-
tic can be decomposed into simpler, but still meaningful and coher-
ent, structures, the mathematicians are showing a mathetic path-
way into numerical knowledge. It is not surprising that Piaget, who
was explicitly searching for a theory of number that would explain
its development in children, developed a similar, parallel set of con-
structs, and then, upon “discovering” the Bourbaki school was able
to use its constructs to elaborate his own.

Piaget observed that children develop coherent intellectual struc-
tures that seemed to correspond very closely to the Bourbaki moth-
er structures. For example, recall the Bourbaki structure of order;
indeed, from the earliest ages, children begin to develop expertise
in ordering things. The topological and algebraic mother structures
have similar developmental precursors. What makes them learn-
able? First of all, each represents a coherent activity in the child’s
life that could in principle be learned and made sense of indepen-
dent of the oihers.

Second, the knowledge structure of each has a kind of internal
simplicity that Piaget has elaborated in his theory of groupements,
and which will be discussed in slightly different terms later. Third,
although these mother structures are independent, the fact that
they are learned in parallel and that they share a common formal-
ism are clues that they are mutually supportive; the learning of
each facilitates the learning of the others.

Piaget has used these ideas to give an account of the develop-
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ment of a variety of domains of knowledge in terms of a coherent,
lawful set of structures as processes within the child’s mind. He de-
scribes these internal structures as always in interaction with the
external world, but his theoretical emphasis has been the internal
events. My perspective is more interventionist. My goals are educa-
tion, not just understanding. So, in my own thinking I have placed
a greater emphasis on two dimensions implicit but not elaborated
in Piaget’s own work: an interest in intellectual structures That
could develop as opposed to those that actually at present do devel-
op in the child, and the design of learning environments that are!
resonant with them. The Turtle can be used to illustrate both of 3
these interests: first, the identification of a powerful set of math-
ematical ideas that we do not presume to be represented, at least
not in a developed form, in children; second, the creation of a tran-
sitional object, the Turtle, that can exist in the child’s environment
and make contact with the ideas. As a mathematician I know that
one of the most powerful ideas in the history of science was that of
differential analysis. From Newton onward, the relationship be-
tween the local and the global pretty well set the agenda for math-
ematics. Yet this idea has had no place in the world of children,
largely because traditional access to it depends on an infrastructure
of formal, mathematical training. For most people, nothing is more
natural than that the most advanced ideas in mathematics should
be inaccessible to children. From the perspective [ took from Pia-
get, we would expect to find connections. So we set out to find
some. But finding the connections did not simply mean inventing a
new kind of clever, “motivating” pedagogy. It meant a research
agenda that included separating what was most powerful in the
idea of differential from the accidents of inaccessible formalisms.
The goal was then to connect these scientifically fundamental
structures with psychologically powerful ones. And of course these
were the ideas that underlay the Turtle circle, the physics
microworlds, and the touch-sensor Turtle.

In what sense is the natural environment a source of micro-
worlds, indeed a source for a network of microworlds? Let’s narrow
the whole natural environment to those things in it that may serve
as a source for one specific microworld, a microworld of pairing, of
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one-to-one correspondence. Much of what children see comes in
pairs: mothers and fathers, knives and forks, eggs and egg cups.
And they, too, are asked to be active constructors of pairs. They are
asked to sort socks, lay the table with one place setting for each
person, and distribute candies. When children focus attention on
pairs they are in a self-constructed microworld, a microworld of
pairs, in the same sense as we placed our students in the micro-
worlds of geometry and physics Turtles. In both cases the relevant
microworld is stripped of complexity, is simple, graspable. In both
cases the child is allowed to play freely with its elements. Although
there are constraints on the materials, there are no constraints on
the exploration of combinations. And in both cases the power of the
environment is that it is “discovery rich.”

Working with computers can make it more apparent that chil-
dren construct their own personal microworlds. The story of Deb-
orah at the end of chapter 4 is a good example. LOGO gave her the
opportunity to construct a particularly tidy microworld, her
“RIGHT 30 world.” But she might have done something like this
in her head without a computer. For example, she might have de-
cided to understand directions in the real world in terms of a simple

set of operations. Such intellectual events are not usually visible to

observers, any more than my algebra teachers knew that I used
gears to think about equations. But they can be seen if one looks
closely enough. Robert Lawler, a member of the Massachusetts In-
stitute of Technology LOGO group, demonstrated this most clearly
in his doctoral research. Lawler set out to observe everything a six-
year-old child, his daughter Miriam, did during a six-month period.
The wealth of information he obtained allowed him to piece togeth-
er a picture of the microstructure of Miriam’s growing abilities.
For example, during this period Miriam learned to add, and Lawler
was able to show that this did not consist of acquiring one logically
uniform procedure. A better model of her learning to add is that
she brought into a working relationship a number of idiosyncratic
microworlds, each of which could be traced to identifiable, previous
experiences.

I have said that Piaget is an epistemologist, but have not elabo-
rated on what kind. Epistemology is the theory of knowledge. The
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term epistemology could, according to its etymology, be used to
cover all knowledge about knowledge, but traditionally it has been
used in a rather special way; that is, to describe the study of the
conditions of validity of knowledge. Piaget’s epistemology is con-
cerned not with the validity of knowledge but with its origin and
growth. He is concerned with the genesis and evolution of knowl-
edge, and marks this fact by describing his field of study as “‘genet-
ic epistemology.” Traditional epistemology has often been taken as
a branch of philosophy. Genetic epistemology works to assert itself
as a science. Its students gather data and develop theories about
how knowledge developed, sometimes focusing on the evolution of
knowledge in history, sometimes on the evolution of knowledge in
the individual. But it does not see the two realms as distinct: It
seeks to understand relations between them. These relations can
take different forms.

In the simplest case the individual development is parallel to the
historical development, recalling the biologists’ dictum, ontogeny
recapitulates phylogeny. For example, children uniformly represent
the physical world in an Aristotelian manner, thinking, for exam-
ple, that forces act on position rather than on velocities. In other
cases, the relation is more complex, indeed to the point of reversal.
Intellectual structures that appear first in a child’s development are
sometimes characteristic not of early science but of the most mod-
ern science. So, for example, the mother structure topology appears
very early in the child’s development, but topology itself appeared
as a mathematical subdiscipline only in modern times. Only when
mathematics becomes sufficiently advanced is it able to discover its
own Origins.

In the early part of the twentieth century, formal logic was seen
as synonymous with the foundation of mathematics. Not until |
Bourbaki’s structuralist theory appeared do we see an internal de-
velopment in mathematics that opened the field up to “remember-
ing” its genetic roots. And through the work of genetic epistemol-
ogy, this “remembering” puts mathematics in the closest possible
relationship to the development of research about how children
construct their reality.

Genetic epistemology has come to assert a set of homologies be-
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tween the structures of knowledge and the structures of the mind
that come into being to grasp this knowledge. Bourbaki’s mother
structures are not simply the elements that underly the concept of
number; rather, homologies are found in the mind as it constructs
number for itself. Thus, the importance of studying the structure of
knowledge is not just to better understand the knowledge itself, but
to understand the person.

Research on the structure of this dialectical process translates
into the belief that neither people nor knowledge—including math-
lematics—can be fully grasped separately from the other, a belief
that was eloquently expressed by Warren McCulloch, who, togeth-
er with Norbert Wiener, should have credit for founding cybernet-
ics. When asked, as a youth, what question would guide his scien-
tific life, McCulloch answered: “What is a man so made that he
can understand number and what is number so made that a man
can understand it?”

For McCulloch as for Piaget, the study of people and the study
of what they learn and think are inseparable. Perhaps paradoxical-
ly for some, research on the nature of that inseparable relationship
has been advanced by the study of machines and the knowledge
they can embody. And it is to this research methodology, that of
artificial intelligence, that we now turn.

In artificial intelligence, researchers use computational models
to gain insight into human psychology as well as reflect on human
1 psychology as a source of ideas about how to make mechanisms
\\ emulate human intelligence. This enterprise strikes many as illogi-

cal: Even when the performance looks identical, is there any reason
to think that underlying processes are the same? Others find it il-
licit: The line between man and machine is seen as immutable by
both theology and mythology. V:I“'here is a fear that we will dehu-
manize what is essentially human by inappropriate analogies be-
tween our “judgments” and those computer “calculations.” I take
these objections very seriously, but feel that they are based on a
view of artificial intelligence that is more reductionist that any-
thing I myself am interested in. A brief parable and some only half-
humored reasoning by analogy express my own views on the
matter.
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Men have always been interested in flying. Once upon a time, scientists
determined to understand how birds fly. First they watched them, hop-
ing to correlate the motion of a bird’s wings with its upward movement.
Then they proceeded to experiment and found that when its feathers
were plucked, a bird could no longer fly. Having thus determined that
feathers were the organ of flight, the scientists then focused their ef-
forts on microscopic and ultramicroscopic investigation of feathers in
order to discover the nature of their flight-giving power.

In reality our current understanding of how birds fly did not come
through a study narrowly focused on birds and gained nothing at
all from the study of feathers. Rather, it came from studying phe-
nomena of different kinds and requiring different methodologies.
Some research involved highly mathematical studies in the laws of
motion of idealized fluids. Other research, closest to our central
point here, consisted of building machines for “artificial flight.”
And, of course, we must add to the list the actual observation of
bird flight. All these research activities synergistically gave rise to
aeronautical science through what we understand of the “natural
flight” of birds and the “artificial flight” of airplanes. And it is in
much the same spirit that I imagine diverse investigations in math-
ematics and in machine intelligence to act synergistically with psy-
chology in giving rise to a discipline of cognitive science whose

| principles would apply to natural and to artificial intelligence.

It is instructive to transpose to the context of flying the common ob-
Jections raised against Al This leads us to imagine skeptics who would
say, “You mathematicians deal with idealized fluids—the real atmo-
sphere is vastly more complicated,” or “You have no reason to suppose
that airplanes and birds work the same way—birds have no propellors,
airplanes have no feathers.” But the premises of these criticisms are
true only in the most superficial sense: the same principle (e.g., Ber-
noulli’s law) applies to real as well as ideal fluids, and they apply
whether the fluid flows over a feather or an aluminum wing.

Workers in the “cognitive studies” branch of AI do not share
any one way of thinking about thinking, any more than traditional
psychologists do. For some, the computer model is used to reduce
all thinking to the formal operations of powerful deductive systems.
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Aristotle succeeded in formulating the deductive rules for a small
corner of human thinking in such simple syllogisms as “If all men
are mortal and Socrates is a man, then Socrates is mortal.” In the
nineteenth century, mathematicians were able to extend this kind
of reasoning to a somewhat larger but still restricted area. But only
in the context of computational methods has there been a serious
attempt to extend deductive logic to cover all forms of reasoning,
including common-sense reasoning and reasoning by analogy.
Working with this kind of deductive model was very popular in the
early days of AL In recent years, however, many workers in the
field have adopted an almost diametrically opposed strategy. In-
stead of seeking powerful deductive methods that would enable sur-
prising conclusions to be drawn from general principles, the new
approach assumes that people are able to think only because they
can draw on larger pools of specific, particular knowledge. More
often than we realize, we solve problems by “almost knowing the

_answer” already. Some researchers try to make programs be intel-

ligent by giving them such quantities of knowledge that the greater
part of solving a problem becomes its retrieval from somewhere in
the memory.

Given my background as a mathematician and Piagetian psy-
chologist, I naturally became most interested in the kinds of com-
putational models that might lead me to better thinking about pow-
erful developmental processes: the acquisition of spatial thinking
and the ability to deal with size and quantity. The rival ap-
proaches—deductive and knowledge based—tended to address per-
formance of a given intellectual system whose structure, if not
whose content, remained static. The kind of developmental ques-
tions I was interested in needed a dynamic model for how intellec-
tual structures themselves could come into being and change. I be-
lieve that these are the kind of models that are most relevant to
education.

The best way I know to characterize this approach is to give a
sample of a theory heavily influenced by ideas from computation
that can help us understand a specific psychological phenomenon:
Piagetian conservation. We recall that children up until the age of
six or seven believe that a quantity of liquid can increase or de-
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crease when it is poured from one container to another. Specifical-
ly, when the second container is taller and narrower than the first,
the children unanimously assert that the quantity of liquid has in-
creased. And then, as if by magic, at about the same age, all chil-
dren change their mind: They now just as unequivocally insist that
the amount of liquid remains the same.

Many theories have been advanced for how this could come to
pass. One of them, which may sound most familiar because it
draws on traditional psychological categories, attributes the pre-/
conservationist position to the child’s being dominated by “appear-
ances.” The child’s “reason” cannot override how things “seem to
be.” Perception rules. 5

Let us now turn to another theory, this time one inspired by com-
putational methods. Again we ask the question: Why does height in
a narrow vessel seem like more to the child, and how does this
change?

Let us posit the existence of three agents in the child’s mind,
each of which judges quantities in a different “simple-minded”
way.* The first, A, judges the quantity of liquids and of anything
else by its vertical extent. A . 18 a practical agent in the life of the
child. It is accustomed to comparing children by standing them
back to back and of equalizing the quantities of Coca-Cola and
chocolate milk in children’s glasses. We emphasize that A ., does
not do anything as complicated as “perceive” the quantity of lig-
uid. Rather, it is fanatically dedicated to an abstract principle:
Anything that goes higher is more.

There is a second agent, called A ,,,, that judges by the horizon-
tal extent. It is not as “practiced” as A ... It gets its chance to
Judge that there is a lot of water in the sea, but in the mind of the
child this principle is less “influential” than AL

Finally, there is an agent called A .y that says that the quanti-
ties are the same because once they were the same. A oy SEEMS tO
speak like a conservationist child, but this is an illusion. A..., has

* The computational perspective on conservation that follows is a highly schematized and
simplified overview of how this phenomenon would be explained by a theory, “The Society of
Mind,” being developed by Marvin Minsky and the author and to be discussed in our forth-
coming book.
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no understanding and would say the quantity is the same even if
some had indeed been added.

In the experiment with the preconservationisi child, each of the
three agents makes its own “decision” and clamors for it to be
adopted. As we know, A, .’s voice speaks the loudest. But this
changes as the child moves on to the next stage.

There are three ways, given our assumption of the presence of
agents, for this change to take place. A, and A ,,, could become
more “sophisticated,” so that, for example, A, »Iv‘ould disqualif
itself except when all other things are equal. Tl:;sl would mean tha)tl
A . would only step forward to judge by height those things that
h.ave. equgl cross sections. Second, there could be a change in “se-
mo'rlty,” in prerogative: A ... could become the dominant voice
N(':lther of these two modes of change is impossible. But there is ;;
.thlrd‘ mode that produces the same effect in a simpler way. Its ke
IQCa is that A, and A, neutralize one another by giviné contra)-l
dictory opinions. The idea is attractive (and close to Piaget’s own
concept of grouplike compositions of operations) but raises some
problems. Why do all three agents not neutralize one another so
that the child would have no opinion at all? The question is an-
s»yered by a further postulate (which has much in common with
Piaget’s idea that intellectual operators be organized into groupe-
ments). The principle of neutralization becomes workablep if
f:nough structure is imposed on the agents for A,_, and A _,. to be
in a special relationship with one another but noﬂt! Iwith A i We
have seen that the technique of creating a new entity work;s‘;gwer-
fully in programming systems. And this is the process we postulate
hcr'e. A new entity, a new agent comes into being. This is A

which acts as the supervisor for A, and A ... In cases whs;o:c;
Am.,n.. and A, agree, A, passes on their message with great “au-
thority.” But if they disagree, A .., is undermined and the voices of
the underlings are neutralized. It must be emphasized that A __is
?\Ot meadni\to “understand” the reasons for decision makin;omby

weigne @Nd A 0. AL knows i

e whichh dir;ction. nothing except whether they agree and,
. This model is absurdly oversimplified in suggesting that even so
simple a piece of a child’s thinking (such as this conservation) can
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be understood in terms of interactions of four agents. Dozens or
hundreds are needed to account for the complexity of the real pro-
cess. But, despite its simplicity, the model accurately conveys some
of the principles of the theory: in particular, that the components of
the system are more like people than they are like propositions and
their interactions are more like social interactions than like the op-
erations of mathematical logic. This shift in perspective allows us
to solve many technical problems in developmental psychology. In
particular, we can understand logical learning as continuous with
social and bodily learning. |

I have said that this theory is inspired by a computational meta-

phor. One might ask how. The “theory” might appear to be noth-
ing but anthropomorphic talk. But we have already seen that anth-
ropomorphic descriptions are often a step toward computational
theories. And the thrust of the society-of-mind theory is that agents
can be translated into precise computational models. As long as we
only think about these agents as “people,” the theory is circular. It
explains the behavior of people in terms of the behavior of people.
But, if we can think of the agents as well-defined computational en-
tities similar to the subprocedures VEE, LINE, and HEAD in the
procedure MAN, everything becomes clearer. We saw even in
small programs how very simple modules can be put together to
produce complex results.

This computational argument saves the society-of-mind theory
from the charge of relying on a vicious circle. But it does not save it
from being circular: On the contrary, like recursive programs in the
style of the procedufe SPI of chapter 3, the theory derives much of
its power from a constructive use of “circular logic.” ‘A traditional
logician looking at how SPI was defined by reference to SP1 might
have objected, but the computer programmers and genetic episte-
mologists share a vision in which this kind of self-reference is not
only legitimate but necessary. And both see it as having an element
of paradox that is only very partially captured by noting how chil-
dren use their “inferior” logic to construct the “superior” logic of
their next phase of development. To an increasing extent through-
out his long career Piaget has emphasized the importance for intel-
lectual growth of children’s ability to reflect on their own thinking.
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The “mathetic paradox” lies in the fact that this reflection must be
from within the child’s current intellectual system.

Despite its oversimplified, almost metaphorical status, the four-
agent account of conservation captures an element of the paradox.
A mathematical logician might like to impose on A, and A, a
superior agent capable of calculating, or at least estimating, vol-
ume from height and cross-section. Many educators might like to
impose such a formula on the child. But this would be introducing
an element alien to the pre-conservationist child’s intellectual sys-
tem. Our A,.,, belongs firmly in the child’s system. It might even be
derived from the model of a father not quite succeeding in impos-
ing order on the family. It is possible to speculate, though I have no
evidence, that the emergence of conservation is related to the

_child’s oedipal crisis through the salience it gives to this model. I
feel on firmer ground in guessing that something like A ., can be-
come important because it so strongly has the two-sided relation-
ship that was used to conceive the Turtle: It is related both to struc-
tures that are firmly in place, such as the child’s representation of
authority figures, and to germs of important mathematical ideas,
such as the idea of “cancellation.”

Readers who are familiar with Piaget’s technical writings will
recognize this concept germ as one of the principles in his “group-
ments.” They may therefore see our model as not very different
from Piaget’s. In a fundamental sense they would be right. But a
new element is introduced in giving a special role to computational
structures: The theme of this book has been the idea of exploiting
this special role by giving children access to computational cul-
tures. If, and only if, these have the right structure they may great-
ly enhance children’s ability to represent the structures-in-place in
ways that will mobilize their conceptual potential.

To recapitulate our reinterpretation of Piaget’s theory makes
three points. First, it provides a specific psychological theory, high-
ly competitive in its parsimony and explanatory power with others
in the field. Second, it shows us the power of a specific computa-
tional principle, in this case the theory of pure procedures, that is,
procedures that can be closed off and used in a modular way.
Third, it concretizes my argument about how different languages
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can influence the cultures that can grow up around them. Not all
programming languages embody this theory of pure procedures.
When they do not, their role as metaphors for psychological issues
is severely biased. The analogy between artificial intelligence and
artificial flying made the point that the same principles could un-
derlie the artificial and natural phenomena, however different
these phenomena might appear. The dynamics of lift are funda-
mental to flight as such, whether the flyers are of flesh and blood
or of metal. We have just seen a principle that may be fundamental

» both to human and artificial intelligence: the principle of epistemo-
" logical modularity. There have been many arguments about wheth-

er the ideal machine for the achievement of intelligence would be
analog or digital, and about whether the brain is analog or digital.
From the point of view of the theory I am advancing here, these ar-
guments are beside the point. The important question is not wheth-
er the brain or the computer is discrete but whether knowledge is
modularizable. '

‘For me, our ability to use computational metaphors in this way,
as carriers for new psychological theories, has implications con-
cerning where theories of knowledge are going and where we are
going as producers and carriers of knowledge. These areas are not
independent. In earlier chapters it was suggested that how we think
about knowledge affects how we think about ourselves. In particu-
lar, our image of knowledge as divided up into different kinds leads
us to a view of people as divided up according to what their apti-
tudes are. This in turn leads to a balkanization of our culture.

Perhaps the fact that I have spoken so negatively about the bal-
kanization of our culture and so positively about the modulariza-
tion of knowledge requires some clarification. When knowledge can
be broken up into “mind-size bites,” it is more communicable,
more assimilable, more simply constructable. The fact that we di-
vide knowledge up into scientific and humanistic worlds defines
some knowledge as being a priori uncommunicable to certain kinds
of people. Our commitment to communication is not only expressed
through our commitment to modularization, which facilitates it,
but through our attempt to find a language for such domains as
physics and mathematics, which have as their essence communica-
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tion between constructed entities. By restating Newton’s laws as
~ assertions about how particles (or “Newtonian Turtles”) communi-
cate with one another, we give it a handle that can be more easily
grabbed by a child or by a poet.

Consider another example of how our images of knowledge can
subvert our sense of ourselves as intellectual agents. Educators
sometimes hold up an ideal of knowledge as having the kind of
coherence defined by formal logic. But these ideals bear little
resemblance to the way in which most people experience them-
selves/ The subjective experience of knowledge is more similar to
the chaos and controversy of competing agents than to the certi-
tude and orderliness of p’s implying ¢’s. The discrepancy between
our experience of ourselves and our idealizations of knowledge has
an effect: It intimidates us, it lessens the sense of our own compe-
tence, and it leads us into counterproductive strategies for learning
and thinking.

Many older students have been intimidated to the point of drop-
ping out, and what is true for adults is doubly true for children. We
have already seen that despite their experience of themselves as
theory builders, children are not respected as such. And these con-
tradictions are compounded by holding out an ideal of knowledge
to which no one’s thinking conforms. Many children and college
students who decide “I can never be a mathematician or a scien-
tist” are reflecting a discrepancy between the way they are led to
believe the mathematician must think and the way they know they
do. In fact the truth is otherwise: Their own thinking is much more
like the mathematician’s than either is like the logical ideal.

I have spoken of the importance of powerful ideas in grasping
the world. But we could hardly ever learn a new idea if every time
we did we had to totally reorganize our cognitive structures in or-
der to use it or if we even had to insure that no inconsistencies had
been introduced. Although powerful ideas have the capacity to help
us organize our way of thinking about a particular class of prob-
lems (such as physics problems), we don’t have to reorganize our-
selves in order to use them. We put our skills and heuristic strate-
gies into a kind of tool box—and while their interaction can, in the
course of time, give rise to global changes, the act of learning is it-
self a local event.

172

—‘—

LOGO’s Roots: Piaget and Al

I'he local nature of learning is seen in my description of the ac-
(uisition of conservation. The necessary agents entered the system
locally; their top goals were in contradiction with each other; the
Agent that finally reconciles them leaves them in place. There is no
renson why this “patchwork theory” of theory building should be
considered appropriate only for describing the learning of children.
Research in artificial intelligence is gradually giving us a surer
sense of the range of problems that can be meaningfully solved on
the pattern we have sketched for the conservation problem: with
modular agents, each of them simple-minded in its own way, many
of them in conflict with one other. The conflicts are regulated and
kept in check rather than “resolved” through the intervention of
special agents no less simple-minded than the original ones. Their
way of reconciling differences does not involve forcing the system
Into a logically consistent mold.

I'he process reminds one of tinkering; learning consists of build-
INg up a set of materials and tools that one can handle and manipu-
late. Perhaps most central of all, it is a process of working with
what you've got. We're all familiar with this process on the con-
scious level, for example, when we attack a problem empirically,
trying out all the things that we have ever known to have worked on

similar problems before. But here | suggest that working with what |

you've got is a shorthand for deeper, even unconscious learning
processes. Anthropologist Claude Lévi-Strauss? has spoken in simi-
lar terms of the kind of theory building that is characteristic of
primitive science. This is a science of the concrete, where the rela-
tionships between natural objects in all their combinations and re-
combinations provide a conceptual vocabulary for building scientif-
ic theories. Here I am suggesting-that in the most fundamental
sense, we, as learners, are all bricoleurs.® This leads us into the sec-
ond kind of implication of our computational theory of agents. If
the first implications had to do with impacts on our ideas about
knowledge and learning, the second have to do with possible im-
pacts on our images of ourselves as learners, If bricolage is a model
for how scientifically legitimate theories are built, then we can be-
gin to develop a greater respect for ourselves as bricoleurs. And of
course this joins our central theme of the importance and power of
Piagetian learning. In order to create the conditions for bringing
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what is now non-Piagetian learning to the Piagetian side, we have
to be able to act in good faith. We have to feel that we are not de-
naturing knowledge in the process.

I end this chapter on cognitive theory and people with a conjec-
ture. Earlier I said that I would not present Piaget as a theorist of
stages. But thinking about Piagetian stages does provide a context
in which to make an important point about a possible impact of a
computational culture on people. Piaget sees his stages of cognitive
development as invariable, and numerous cross-cultural investiga-
tions have seemed to confirm the validity of his belief. In society
after society, children seem to develop cognitive capacities in the
same order: In particular, his stage of concrete operations, to which
the conservations typically belong, begins four or more years earli-
er than the next and final stage, the stage of formal operations. The
construct of a stage of concrete operations is supported by the ob-
servation that, typically, children in our society at six or seven
make a breakthrough in many realms, and seemingly all at once.
They are able to use units of numbers, space, and time; to reason
by transitivity; to build up classificatory systems. But there are
things they cannot do. In particular, they flounder in situations
that call for thinking not about how things are but about all the
ways they could be. Let us consider the following example, which I
anticipated in the introduction.

A child is given a collection of beads of different colors, say
green, red, blue, and black, and is asked to construct all the possi-
ble pairs of colors: green-blue, green-red, green-black, and then the
triplets and so on. Just as children do not acquire conservation until
their seventh year, children around the world are unable to carry
out such combinatorial tasks before their eleventh or twelfth year.
Indeed, many adults who are “intelligent” enough to live normal
lives never acquire this ability.

What is the nature of the difference between the so-called “con-
crete” operations involved in conservation and the so-called ““for-
mal” operations involved in the combinatorial task? The names
given them by Piaget and the empirical data suggest a deep and es-
sential difference. But looking at the problem through the prism of
the ideas developed here gives a much different impression.
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I'rom a computational point of view, the most salient ingredients
ol the combinatorial task are related to the idea of procedure—sys-
tematicity and debugging. A successful solution consists of follow-
ing some such procedure as:

I Separate the beads into colors.
). Choose a color A as color 1.
. Form all the pairs that can be formed with color 1.

4. Choose color 2.

5 Form all the pairs that can be formed with color 2.
6. Do this for each color.

/. Go back and remove the duplicates.”

50 what is really involved is writing and executing a program in-
cluding the all-important debugging step. This observation suggests
i reason for the fact that children acquire this ability so late: Con-
temporary culture provides relatively little opportunity for brico-
lage with the elements of systematic procedures of this type. I do
not mean to say that there are no such opportunities. Some are en-
countered; for example, in games where a child can create his own
“combinatorial microworlds.” But the opportunities, the incentives,
and the help offered the child in this area are very significantly less
than in such areas as number. In our culture number is richly rep-
resented, systematic procedure is poorly represented.* :

I see no reason to doubt that this difference could account for a
gap of five years or more between the ages at which conservation of
number and combinatorial abilities are acquired.

The standard methodology for investigating such hypotheses as
this is to compare children in different cultures. This has, of course,
been done for the Piagetian stages. Children at all the levels of de-
velopment anthropologists have been able to distinguish, and in
over a hundred different societies from all the continents, have
been asked to pour liquids and sort beads. In all cases, if conserva-
tion and combinatorial skills came at all, conservation of numbers
was evidenced by children five or more years younger than those
evidencing combinatorial skills. Yet this observation casts no doubt
on my hypothesis. It may well be universally true of precomputer
societies that numerical knowledge would be more richly repre- |
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sented than programming knowledge. It is not hard to invent plau-
sible explanations of such a cognitive-social universal. But things
may be different in the computer-rich cultures of the future. If
computers and programming become a part of the daily life of chil-
dren, the conservation-combinatorial gap will surely close and
could conceivably be reversed: Children may learn to be systematf?‘ '
before they learn to be quantitative! b

i

Chapter 8

Images of the
Learning Society

THE VISION [ HAVE PRESENTED is of a particular computcrg
culture, a mathetic one, that is, one that helps us not only to learn
but to learn about learning. I have shown how this culture can hu-
manize learning by permitting more personal, less alienating rela-
tionships with knowledge and have given some examples of how it
can improve relationships with other people encountered in the
learning process: fellow students and teachers. But I have made
’ only passing remarks about the social context in which this learn-
} ing might take place. It is time to face (though I cannot answer) a
question that must be in many readers’ minds: Will this context be
school?

The suggestion that there might come a day when schools no
longer exist elicits strong response from many people. There are
many obstacles to thinking clearly about a world without schools.
Some are highly personal. Most of us spent a larger fraction of our
lives going to school than we care to think about. For example, I |
am over fifty and yet the number of my postschool years has |
barely caught up with my preschool and school years. The concept
of a world without school is highly dissonant with out experiences
of our own lives. Other obstacles are more conceptual. One cannot
define such a world negatively, that is by simply removing school
and putting nothing in its place. Doing so leaves a thought vacuum
that the mind has to fill one way or another, often with vague but
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